As a common visual problem, co-saliency detection within a single image does not attract enough attention and yet has not been well addressed. Existing methods often follow a bottom-up strategy to infer co-saliency in an image, where salient regions are firstly detected using visual primitives such as color and shape, and then grouped and merged into a co-saliency map. However, co-saliency is intrinsically perceived in a complex manner with bottom-up and top-down strategies combined in human vision. To deal with this problem, a novel end-to-end trainable network is proposed in this paper, which includes a backbone net and two branch nets. The backbone net uses ground-truth masks as top-down guidance for saliency prediction, while the two branch nets construct triplet proposals for feature organization and clustering, which drives the network to be sensitive to co-salient regions in a bottom-up way. To evaluate the proposed method, we construct a new dataset of 2,019 nature images with co-saliency in each image. Experimental results show that the proposed method achieves a state-of-the-art accuracy with a running speed of 28fps.