In many machine learning applications, one needs to interactively select a sequence of items (e.g., recommending movies based on a user's feedback) or make sequential decisions in certain orders (e.g., guiding an agent through a series of states). Not only do sequences already pose a dauntingly large search space, but we must take into account past observations, as well as the uncertainty of future outcomes. Without further structure, finding an optimal sequence is notoriously challenging, if not completely intractable. In this paper, we introduce adaptive sequence submodularity, a rich framework that generalizes the notion of submodularity to adaptive policies that explicitly consider sequential dependencies between items. We show that once such dependencies are encoded by a directed graph, an adaptive greedy policy is guaranteed to achieve a constant factor approximation guarantee, where the constant naturally depends on the structural properties of the underlying graph. Additionally, to demonstrate the practical utility of our results, we run experiments on Amazon product recommendation and Wikipedia link prediction tasks.