Building 3D perception systems for autonomous vehicles that do not rely on LiDAR is a critical research problem because of the high expense of LiDAR systems compared to cameras and other sensors. Current methods use multi-view RGB data collected from cameras around the vehicle and neurally "lift" features from the perspective images to the 2D ground plane, yielding a "bird's eye view" (BEV) feature representation of the 3D space around the vehicle. Recent research focuses on the way the features are lifted from images to the BEV plane. We instead propose a simple baseline model, where the "lifting" step simply averages features from all projected image locations, and find that it outperforms the current state-of-the-art in BEV vehicle segmentation. Our ablations show that batch size, data augmentation, and input resolution play a large part in performance. Additionally, we reconsider the utility of radar input, which has previously been either ignored or found non-helpful by recent works. With a simple RGB-radar fusion module, we obtain a sizable boost in performance, approaching the accuracy of a LiDAR-enabled system.