domains.Next, we compare our proposed two training algorithms throughboth complexity analysis and experiments. Finally, we verify themodel performance on benchmark dataset and further apply ourwork to a real-world scenario.
Gradient tree boosting (e.g. XGB) is one of the most widely usedmachine learning models in practice. How to build a secure XGB inface of data isolation problem becomes a hot research topic. However, existing works tend to leak intermediate information and thusraise potential privacy risk. In this paper, we propose a novel framework for two parties to build secure XGB with vertically partitioneddata. Specifically, we associate Homomorphic Encryption (HE) domain with Secret Sharing (SS) domain by providing the two-waytransformation primitives. The framework generally promotes theefficiency for privacy preserving machine learning and offers theflexibility to implement other machine learning models. Then weelaborate two secure XGB training algorithms as well as a corresponding prediction algorithm under the hybrid security