Abstract:In this letter, we propose an energy-efficient split learning (SL) framework for fine-tuning large language models (LLMs) using geo-distributed personal data at the network edge, where LLMs are split and alternately across massive mobile devices and an edge server. Considering the device heterogeneity and channel dynamics in edge networks, a Cut lAyer and computing Resource Decision (CARD) algorithm is developed to minimize training delay and energy consumption. Simulation results demonstrate that the proposed approach reduces the average training delay and server's energy consumption by 70.8\% and 53.1\%, compared to the benchmarks, respectively.
Abstract:In this paper, we study a vehicle selection problem for federated learning (FL) over vehicular networks. Specifically, we design a mobility-aware vehicular federated learning (MAVFL) scheme in which vehicles drive through a road segment to perform FL. Some vehicles may drive out of the segment which leads to unsuccessful training. In the proposed scheme, the real-time successful training participation ratio is utilized to implement vehicle selection. We conduct the convergence analysis to indicate the influence of vehicle mobility on training loss. Furthermore, we propose a multi-armed bandit-based vehicle selection algorithm to minimize the utility function considering training loss and delay. The simulation results show that compared with baselines, the proposed algorithm can achieve better training performance with approximately 28\% faster convergence.
Abstract:Split learning (SL) is a promising approach for training artificial intelligence (AI) models, in which devices collaborate with a server to train an AI model in a distributed manner, based on a same fixed split point. However, due to the device heterogeneity and variation of channel conditions, this way is not optimal in training delay and energy consumption. In this paper, we design an adaptive split learning (ASL) scheme which can dynamically select split points for devices and allocate computing resource for the server in wireless edge networks. We formulate an optimization problem to minimize the average training latency subject to long-term energy consumption constraint. The difficulties in solving this problem are the lack of future information and mixed integer programming (MIP). To solve it, we propose an online algorithm leveraging the Lyapunov theory, named OPEN, which decomposes it into a new MIP problem only with the current information. Then, a two-layer optimization method is proposed to solve the MIP problem. Extensive simulation results demonstrate that the ASL scheme can reduce the average training delay and energy consumption by 53.7% and 22.1%, respectively, as compared to the existing SL schemes.