Abstract:LiDAR-based 3D perception algorithms have evolved rapidly alongside the emergence of large datasets. Nonetheless, considerable performance degradation often ensues when models trained on a specific dataset are applied to other datasets or real-world scenarios with different LiDAR. This paper aims to develop a unified model capable of handling different LiDARs, enabling continual learning across diverse LiDAR datasets and seamless deployment across heterogeneous platforms. We observe that the gaps among datasets primarily manifest in geometric disparities (such as variations in beams and point counts) and semantic inconsistencies (taxonomy conflicts). To this end, this paper proposes UniLiDAR, an occupancy prediction pipeline that leverages geometric realignment and semantic label mapping to facilitate multiple datasets training and mitigate performance degradation during deployment on heterogeneous platforms. Moreover, our method can be easily combined with existing 3D perception models. The efficacy of the proposed approach in bridging LiDAR domain gaps is verified by comprehensive experiments on two prominent datasets: OpenOccupancy-nuScenes and SemanticKITTI. UniLiDAR elevates the mIoU of occupancy prediction by 15.7% and 12.5%, respectively, compared to the model trained on the directly merged dataset. Moreover, it outperforms several SOTA methods trained on individual datasets. We expect our research to facilitate further study of 3D generalization, the code will be available soon.
Abstract:The 4D millimeter-wave (mmWave) radar, capable of measuring the range, azimuth, elevation, and velocity of targets, has attracted considerable interest in the autonomous driving community. This is attributed to its robustness in extreme environments and outstanding velocity and elevation measurement capabilities. However, despite the rapid development of research related to its sensing theory and application, there is a notable lack of surveys on the topic of 4D mmWave radar. To address this gap and foster future research in this area, this paper presents a comprehensive survey on the use of 4D mmWave radar in autonomous driving. Reviews on the theoretical background and progress of 4D mmWave radars are presented first, including the signal processing flow, resolution improvement ways, extrinsic calibration process, and point cloud generation methods. Then it introduces related datasets and application algorithms in autonomous driving perception and localization and mapping tasks. Finally, this paper concludes by predicting future trends in the field of 4D mmWave radar. To the best of our knowledge, this is the first survey specifically for the 4D mmWave radar.