Abstract:Protein-Protein Interaction (PPI) prediction is a key task in uncovering cellular functional networks and disease mechanisms. However, traditional experimental methods are time-consuming and costly, and existing computational models face challenges in cross-modal feature fusion, robustness, and false-negative suppression. In this paper, we propose a novel supervised contrastive multimodal framework, SCMPPI, for PPI prediction. By integrating protein sequence features (AAC, DPC, CKSAAP-ESMC) with PPI network topology information (Node2Vec graph embedding), and combining an improved supervised contrastive learning strategy, SCMPPI significantly enhances PPI prediction performance. For the PPI task, SCMPPI introduces a negative sample filtering mechanism and modifies the contrastive loss function, effectively optimizing multimodal features. Experiments on eight benchmark datasets, including yeast, human, and H.pylori, show that SCMPPI outperforms existing state-of-the-art methods (such as DF-PPI and TAGPPI) in key metrics such as accuracy ( 98.01%) and AUC (99.62%), and demonstrates strong generalization in cross-species prediction (AUC > 99% on multi-species datasets). Furthermore, SCMPPI has been successfully applied to CD9 networks, the Wnt pathway, and cancer-specific networks, providing a reliable tool for disease target discovery. This framework also offers a new paradigm for multimodal biological information fusion and contrastive learning in collaborative optimization for various combined predictions.
Abstract:Empathy is an important characteristic to be considered when building a more intelligent and humanized dialogue agent. However, existing methods did not fully comprehend empathy as a complex process involving three aspects: cognition, affection and behavior. In this paper, we propose CAB, a novel framework that takes a comprehensive perspective of cognition, affection and behavior to generate empathetic responses. For cognition, we build paths between critical keywords in the dialogue by leveraging external knowledge. This is because keywords in a dialogue are the core of sentences. Building the logic relationship between keywords, which is overlooked by the majority of existing works, can improve the understanding of keywords and contextual logic, thus enhance the cognitive ability. For affection, we capture the emotional dependencies with dual latent variables that contain both interlocutors' emotions. The reason is that considering both interlocutors' emotions simultaneously helps to learn the emotional dependencies. For behavior, we use appropriate dialogue acts to guide the dialogue generation to enhance the empathy expression. Extensive experiments demonstrate that our multi-perspective model outperforms the state-of-the-art models in both automatic and manual evaluation.