Abstract:For intelligent quadcopter UAVs, a robust and reliable autonomous planning system is crucial. Most current trajectory planning methods for UAVs are suitable for static environments but struggle to handle dynamic obstacles, which can pose challenges and even dangers to flight. To address this issue, this paper proposes a vision-based planning system that combines tracking and trajectory prediction of dynamic obstacles to achieve efficient and reliable autonomous flight. We use a lightweight object detection algorithm to identify dynamic obstacles and then use Kalman Filtering to track and estimate their motion states. During the planning phase, we not only consider static obstacles but also account for the potential movements of dynamic obstacles. For trajectory generation, we use a B-spline-based trajectory search algorithm, which is further optimized with various constraints to enhance safety and alignment with the UAV's motion characteristics. We conduct experiments in both simulation and real-world environments, and the results indicate that our approach can successfully detect and avoid obstacles in dynamic environments in real-time, offering greater reliability compared to existing approaches. Furthermore, with the advancements in Natural Language Processing (NLP) technology demonstrating exceptional zero-shot generalization capabilities, more user-friendly human-machine interactions have become feasible, and this study also explores the integration of autonomous planning systems with Large Language Models (LLMs).
Abstract:To implement autonomous driving, one essential step is to model the vehicle environment based on the sensor inputs. Radars, with their well-known advantages, became a popular option to infer the occupancy state of grid cells surrounding the vehicle. To tackle data sparsity and noise of radar detections, we propose a deep learning-based Inverse Sensor Model (ISM) to learn the mapping from sparse radar detections to polar measurement grids. Improved lidar-based measurement grids are used as reference. The learned radar measurement grids, combined with radar Doppler velocity measurements, are further used to generate a Dynamic Grid Map (DGM). Experiments in real-world highway scenarios show that our approach outperforms the hand-crafted geometric ISMs. In comparison to state-of-the-art deep learning methods, our approach is the first one to learn a single-frame measurement grid in the polar scheme from radars with a limited Field Of View (FOV). The learning framework makes the learned ISM independent of the radar mounting. This enables us to flexibly use one or more radar sensors without network retraining and without requirements on 360{\deg} sensor coverage.