Abstract:The rapid evolution of artificial intelligence (AI), specifically large language models (LLMs), has opened opportunities for various educational applications. This paper explored the feasibility of utilizing ChatGPT, one of the most popular LLMs, for automating feedback for Java programming assignments in an introductory computer science (CS1) class. Specifically, this study focused on three questions: 1) To what extent do students view LLM-generated feedback as formative? 2) How do students see the comparative affordances of feedback prompts that include their code, vs. those that exclude it? 3) What enhancements do students suggest for improving AI-generated feedback? To address these questions, we generated automated feedback using the ChatGPT API for four lab assignments in the CS1 class. The survey results revealed that students perceived the feedback as aligning well with formative feedback guidelines established by Shute. Additionally, students showed a clear preference for feedback generated by including the students' code as part of the LLM prompt, and our thematic study indicated that the preference was mainly attributed to the specificity, clarity, and corrective nature of the feedback. Moreover, this study found that students generally expected specific and corrective feedback with sufficient code examples, but had diverged opinions on the tone of the feedback. This study demonstrated that ChatGPT could generate Java programming assignment feedback that students perceived as formative. It also offered insights into the specific improvements that would make the ChatGPT-generated feedback useful for students.
Abstract:Bloodstain pattern analysis plays a crucial role in crime scene investigations by providing valuable information through the study of unique blood patterns. Conventional image analysis methods, like Thresholding and Contrast, impose stringent requirements on the image background and is labor-intensive in the context of droplet image segmentation. The Segment Anything Model (SAM), a recently proposed method for extensive image recognition, is yet to be adequately assessed for its accuracy and efficiency on bloodstain image segmentation. This paper explores the application of pre-trained SAM and fine-tuned SAM on bloodstain image segmentation with diverse image backgrounds. Experiment results indicate that both pre-trained and fine-tuned SAM perform the bloodstain image segmentation task with satisfactory accuracy and efficiency, while fine-tuned SAM achieves an overall 2.2\% accuracy improvement than pre-trained SAM and 4.70\% acceleration in terms of speed for image recognition. Analysis of factors that influence bloodstain recognition is carried out. This research demonstrates the potential application of SAM on bloodstain image segmentation, showcasing the effectiveness of Artificial Intelligence application in criminology research. We release all code and demos at \url{https://github.com/Zdong104/Bloodstain_Analysis_Ai_Tool}