Abstract:Street view imagery (SVI) has been instrumental in many studies in the past decade to understand and characterize street features and the built environment. Researchers across a variety of domains, such as transportation, health, architecture, human perception, and infrastructure have employed different methods to analyze SVI. However, these applications and image-processing procedures have not been standardized, and solutions have been implemented in isolation, often making it difficult for others to reproduce existing work and carry out new research. Using SVI for research requires multiple technical steps: accessing APIs for scalable data collection, preprocessing images to standardize formats, implementing computer vision models for feature extraction, and conducting spatial analysis. These technical requirements create barriers for researchers in urban studies, particularly those without extensive programming experience. We develop ZenSVI, a free and open-source Python package that integrates and implements the entire process of SVI analysis, supporting a wide range of use cases. Its end-to-end pipeline includes downloading SVI from multiple platforms (e.g., Mapillary and KartaView) efficiently, analyzing metadata of SVI, applying computer vision models to extract target features, transforming SVI into different projections (e.g., fish-eye and perspective) and different formats (e.g., depth map and point cloud), visualizing analyses with maps and plots, and exporting outputs to other software tools. We demonstrate its use in Singapore through a case study of data quality assessment and clustering analysis in a streamlined manner. Our software improves the transparency, reproducibility, and scalability of research relying on SVI and supports researchers in conducting urban analyses efficiently. Its modular design facilitates extensions and unlocking new use cases.
Abstract:Street View Imagery (SVI) has emerged as a valuable data form in urban studies, enabling new ways to map and sense urban environments. However, fundamental concerns regarding the representativeness, quality, and reliability of SVI remain underexplored, e.g.\ to what extent can cities be captured by such data and do data gaps result in bias. This research, positioned at the intersection of spatial data quality and urban analytics, addresses these concerns by proposing a novel workflow to estimate SVI's feature-level coverage on urban environment. The workflow integrates the positional relationships between SVI and target features, as well as the impact of environmental obstructions. Expanding the domain of data quality to SVI, we introduce an indicator system that evaluates the extent of coverage, focusing on the completeness and frequency dimensions. Using London as a case study, three experiments are conducted to identify potential biases in SVI's ability to cover and represent urban features, with a focus on building facades. The research highlights the limitations of traditional spatial data quality metrics in assessing SVI, and variability of SVI coverage under different data acquisition practices. Tailored approaches that consider the unique metadata and horizontal perspective of SVI are also underscored. The findings suggest that while SVI offers valuable insights, it is no panacea -- its application in urban research requires careful consideration of data coverage and feature-level representativeness to ensure reliable results.