Abstract:Pipeline Parallelism (PP) serves as a crucial technique for training Large Language Models (LLMs), owing to its capability to alleviate memory pressure from model states with relatively low communication overhead. However, in long-context scenarios, existing pipeline parallelism methods fail to address the substantial activation memory pressure, primarily due to the peak memory consumption resulting from the accumulation of activations across multiple microbatches. Moreover, these approaches inevitably introduce considerable pipeline bubbles, further hindering efficiency. To tackle these challenges, we propose SlimPipe, a novel approach to fine-grained pipeline parallelism that employs uniform sequence slicing coupled with one-forward-one-backward (1F1B) schedule. It reduces the accumulated activations from several microbatches to just one, which is split into several slices. Although the slices are evenly partitioned, the computation cost is not equal across slices due to causal attention. We develop a sophisticated workload redistribution technique to address this load imbalance. SlimPipe achieves (1) near-zero memory overhead and (2) minimal pipeline bubbles simultaneously. The effectiveness of SlimPipe has been proven by thorough testing with diverse model architectures, context window sizes, and SlimPipe-specific configurations. For example, on the Llama 70B model, compared to state-of-the-art methods, SlimPipe significantly boosts the Model FLOPs Utilization (MFU) to up to $1.57\times$ for a context length of 512K. More notably, for a context length of 2048K, it maintains over 45% utilization on 256 NVIDIA Hopper 80GB GPUs, while other approaches either suffer significant performance drops or fail entirely due to memory constraints.
Abstract:Multilingual spoken language understanding (SLU) consists of two sub-tasks, namely intent detection and slot filling. To improve the performance of these two sub-tasks, we propose to use consistency regularization based on a hybrid data augmentation strategy. The consistency regularization enforces the predicted distributions for an example and its semantically equivalent augmentation to be consistent. We conduct experiments on the MASSIVE dataset under both full-dataset and zero-shot settings. Experimental results demonstrate that our proposed method improves the performance on both intent detection and slot filling tasks. Our system\footnote{The code will be available at \url{https://github.com/bozheng-hit/MMNLU-22-HIT-SCIR}.} ranked 1st in the MMNLU-22 competition under the full-dataset setting.
Abstract:In a dialog system, dialog act recognition and sentiment classification are two correlative tasks to capture speakers intentions, where dialog act and sentiment can indicate the explicit and the implicit intentions separately. The dialog context information (contextual information) and the mutual interaction information are two key factors that contribute to the two related tasks. Unfortunately, none of the existing approaches consider the two important sources of information simultaneously. In this paper, we propose a Co-Interactive Graph Attention Network (Co-GAT) to jointly perform the two tasks. The core module is a proposed co-interactive graph interaction layer where a cross-utterances connection and a cross-tasks connection are constructed and iteratively updated with each other, achieving to consider the two types of information simultaneously. Experimental results on two public datasets show that our model successfully captures the two sources of information and achieve the state-of-the-art performance. In addition, we find that the contributions from the contextual and mutual interaction information do not fully overlap with contextualized word representations (BERT, Roberta, XLNet).