Abstract:Multilingual spoken language understanding (SLU) consists of two sub-tasks, namely intent detection and slot filling. To improve the performance of these two sub-tasks, we propose to use consistency regularization based on a hybrid data augmentation strategy. The consistency regularization enforces the predicted distributions for an example and its semantically equivalent augmentation to be consistent. We conduct experiments on the MASSIVE dataset under both full-dataset and zero-shot settings. Experimental results demonstrate that our proposed method improves the performance on both intent detection and slot filling tasks. Our system\footnote{The code will be available at \url{https://github.com/bozheng-hit/MMNLU-22-HIT-SCIR}.} ranked 1st in the MMNLU-22 competition under the full-dataset setting.
Abstract:In a dialog system, dialog act recognition and sentiment classification are two correlative tasks to capture speakers intentions, where dialog act and sentiment can indicate the explicit and the implicit intentions separately. The dialog context information (contextual information) and the mutual interaction information are two key factors that contribute to the two related tasks. Unfortunately, none of the existing approaches consider the two important sources of information simultaneously. In this paper, we propose a Co-Interactive Graph Attention Network (Co-GAT) to jointly perform the two tasks. The core module is a proposed co-interactive graph interaction layer where a cross-utterances connection and a cross-tasks connection are constructed and iteratively updated with each other, achieving to consider the two types of information simultaneously. Experimental results on two public datasets show that our model successfully captures the two sources of information and achieve the state-of-the-art performance. In addition, we find that the contributions from the contextual and mutual interaction information do not fully overlap with contextualized word representations (BERT, Roberta, XLNet).