Abstract:Open-vocabulary detection (OVD) is a challenging task to detect and classify objects from an unrestricted set of categories, including those unseen during training. Existing open-vocabulary detectors are limited by complex visual-textual misalignment and long-tailed category imbalances, leading to suboptimal performance in challenging scenarios. To address these limitations, we introduce MQADet, a universal paradigm for enhancing existing open-vocabulary detectors by leveraging the cross-modal reasoning capabilities of multimodal large language models (MLLMs). MQADet functions as a plug-and-play solution that integrates seamlessly with pre-trained object detectors without substantial additional training costs. Specifically, we design a novel three-stage Multimodal Question Answering (MQA) pipeline to guide the MLLMs to precisely localize complex textual and visual targets while effectively enhancing the focus of existing object detectors on relevant objects. To validate our approach, we present a new benchmark for evaluating our paradigm on four challenging open-vocabulary datasets, employing three state-of-the-art object detectors as baselines. Experimental results demonstrate that our proposed paradigm significantly improves the performance of existing detectors, particularly in unseen complex categories, across diverse and challenging scenarios. To facilitate future research, we will publicly release our code.
Abstract:Vision-and-Language Navigation (VLN) is a challenging task that requires a robot to navigate in photo-realistic environments with human natural language promptings. Recent studies aim to handle this task by constructing the semantic spatial map representation of the environment, and then leveraging the strong ability of reasoning in large language models for generalizing code for guiding the robot navigation. However, these methods face limitations in instance-level and attribute-level navigation tasks as they cannot distinguish different instances of the same object. To address this challenge, we propose a new method, namely, Instance-aware Visual Language Map (IVLMap), to empower the robot with instance-level and attribute-level semantic mapping, where it is autonomously constructed by fusing the RGBD video data collected from the robot agent with special-designed natural language map indexing in the bird's-in-eye view. Such indexing is instance-level and attribute-level. In particular, when integrated with a large language model, IVLMap demonstrates the capability to i) transform natural language into navigation targets with instance and attribute information, enabling precise localization, and ii) accomplish zero-shot end-to-end navigation tasks based on natural language commands. Extensive navigation experiments are conducted. Simulation results illustrate that our method can achieve an average improvement of 14.4\% in navigation accuracy. Code and demo are released at https://ivlmap.github.io/.