Abstract:This paper introduces a novel approach to predicting periodic time series using reservoir computing. The model is tailored to deliver precise forecasts of rhythms, a crucial aspect for tasks such as generating musical rhythm. Leveraging reservoir computing, our proposed method is ultimately oriented towards predicting human perception of rhythm. Our network accurately predicts rhythmic signals within the human frequency perception range. The model architecture incorporates primary and intermediate neurons tasked with capturing and transmitting rhythmic information. Two parameter matrices, denoted as c and k, regulate the reservoir's overall dynamics. We propose a loss function to adapt c post-training and introduce a dynamic selection (DS) mechanism that adjusts $k$ to focus on areas with outstanding contributions. Experimental results on a diverse test set showcase accurate predictions, further improved through real-time tuning of the reservoir via c and k. Comparative assessments highlight its superior performance compared to conventional models.
Abstract:Deep learning-based approaches, such as AlphaFold2 (AF2), have significantly advanced protein tertiary structure prediction, achieving results comparable to real biological experimental methods. While AF2 has shown limitations in predicting the effects of mutations, its robustness against sequence mutations remains to be determined. Starting with the wild-type (WT) sequence, we investigate adversarial sequences generated via an evolutionary approach, which AF2 predicts to be substantially different from WT. Our experiments on CASP14 reveal that by modifying merely three residues in the protein sequence using a combination of replacement, deletion, and insertion strategies, the alteration in AF2's predictions, as measured by the Local Distance Difference Test (lDDT), reaches 46.61. Moreover, when applied to a specific protein, SPNS2, our proposed algorithm successfully identifies biologically meaningful residues critical to protein structure determination and potentially indicates alternative conformations, thus significantly expediting the experimental process.
Abstract:Cross-domain few-shot relation extraction poses a great challenge for the existing few-shot learning methods and domain adaptation methods when the source domain and target domain have large discrepancies. This paper proposes a method by combining the idea of few-shot learning and domain adaptation to deal with this problem. In the proposed method, an encoder, learned by optimizing a representation loss and an adversarial loss, is used to extract the relation of sentences in the source and target domain. The representation loss, including a cross-entropy loss and a contrastive loss, makes the encoder extract the relation of the source domain and keep the geometric structure of the classes in the source domain. And the adversarial loss is used to merge the source domain and target domain. The experimental results on the benchmark FewRel dataset demonstrate that the proposed method can outperform some state-of-the-art methods.