Abstract:Domain adaptation (DA) techniques help deep learning models generalize across data shifts for point cloud semantic segmentation (PCSS). Test-time adaptation (TTA) allows direct adaptation of a pre-trained model to unlabeled data during inference stage without access to source data or additional training, avoiding privacy issues and large computational resources. We address TTA for geospatial PCSS by introducing three domain shift paradigms: photogrammetric to airborne LiDAR, airborne to mobile LiDAR, and synthetic to mobile laser scanning. We propose a TTA method that progressively updates batch normalization (BN) statistics with each testing batch. Additionally, a self-supervised learning module optimizes learnable BN affine parameters. Information maximization and reliability-constrained pseudo-labeling improve prediction confidence and supply supervisory signals. Experimental results show our method improves classification accuracy by up to 20\% mIoU, outperforming other methods. For photogrammetric (SensatUrban) to airborne (Hessigheim 3D) adaptation at the inference stage, our method achieves 59.46\% mIoU and 85.97\% OA without retraining or fine-turning.
Abstract:Greenspaces are tightly linked to human well-being. Yet, rapid urbanization has exacerbated greenspace exposure inequality and declining human life quality. Roof greening has been recognized as an effective strategy to mitigate these negative impacts. Understanding priorities and benefits is crucial to promoting green roofs. Here, using geospatial big data, we conduct an urban-scale assessment of roof greening at a single building level in Hong Kong from a sustainable development perspective. We identify that 85.3\% of buildings reveal potential and urgent demand for roof greening. We further find green roofs could increase greenspace exposure by \textasciitilde61\% and produce hundreds of millions (HK\$) in economic benefits annually but play a small role in urban heat mitigation (\textasciitilde0.15\degree{C}) and annual carbon emission offsets (\textasciitilde0.8\%). Our study offers a comprehensive assessment of roof greening, which could provide reference for sustainable development in cities worldwide, from data utilization to solutions and findings.
Abstract:Fine classification of city-scale buildings from satellite remote sensing imagery is a crucial research area with significant implications for urban planning, infrastructure development, and population distribution analysis. However, the task faces big challenges due to low-resolution overhead images acquired from high altitude space-borne platforms and the long-tail sample distribution of fine-grained urban building categories, leading to severe class imbalance problem. To address these issues, we propose a deep network approach to fine-grained classification of urban buildings using open-access satellite images. A Denoising Diffusion Probabilistic Model (DDPM) based super-resolution method is first introduced to enhance the spatial resolution of satellite images, which benefits from domain-adaptive knowledge distillation. Then, a new fine-grained classification network with Category Information Balancing Module (CIBM) and Contrastive Supervision (CS) technique is proposed to mitigate the problem of class imbalance and improve the classification robustness and accuracy. Experiments on Hong Kong data set with 11 fine building types revealed promising classification results with a mean Top-1 accuracy of 60.45\%, which is on par with street-view image based approaches. Extensive ablation study shows that CIBM and CS improve Top-1 accuracy by 2.6\% and 3.5\% compared to the baseline method, respectively. And both modules can be easily inserted into other classification networks and similar enhancements have been achieved. Our research contributes to the field of urban analysis by providing a practical solution for fine classification of buildings in challenging mega city scenarios solely using open-access satellite images. The proposed method can serve as a valuable tool for urban planners, aiding in the understanding of economic, industrial, and population distribution.
Abstract:Developments in three-dimensional real worlds promote the integration of geoinformation and building information models (BIM) known as GeoBIM in urban construction. Light detection and ranging (LiDAR) integrated with global navigation satellite systems can provide geo-referenced spatial information. However, constructing detailed urban GeoBIM poses challenges in terms of LiDAR data quality. BIM models designed from software are rich in geometrical information but often lack accurate geo-referenced locations. In this paper, we propose a complementary strategy that integrates LiDAR point clouds with as-designed BIM models for reconstructing urban scenes. A state-of-the-art deep learning framework and graph theory are first combined for LiDAR point cloud segmentation. A coarse-to-fine matching program is then developed to integrate object point clouds with corresponding BIM models. Results show the overall segmentation accuracy of LiDAR datasets reaches up to 90%, and average positioning accuracies of BIM models are 0.023 m for pole-like objects and 0.156 m for buildings, demonstrating the effectiveness of the method in segmentation and matching processes. This work offers a practical solution for rapid and accurate urban GeoBIM construction.