Abstract:In streaming PCA, we see a stream of vectors $x_1, \dotsc, x_n \in \mathbb{R}^d$ and want to estimate the top eigenvector of their covariance matrix. This is easier if the spectral ratio $R = \lambda_1 / \lambda_2$ is large. We ask: how large does $R$ need to be to solve streaming PCA in $\widetilde{O}(d)$ space? Existing algorithms require $R = \widetilde{\Omega}(d)$. We show: (1) For all mergeable summaries, $R = \widetilde{\Omega}(\sqrt{d})$ is necessary. (2) In the insertion-only model, a variant of Oja's algorithm gets $o(1)$ error for $R = O(\log n \log d)$. (3) No algorithm with $o(d^2)$ space gets $o(1)$ error for $R = O(1)$. Our analysis is the first application of Oja's algorithm to adversarial streams. It is also the first algorithm for adversarial streaming PCA that is designed for a spectral, rather than Frobenius, bound on the tail; and the bound it needs is exponentially better than is possible by adapting a Frobenius guarantee.
Abstract:Diffusion models are a remarkably effective way of learning and sampling from a distribution $p(x)$. In posterior sampling, one is also given a measurement model $p(y \mid x)$ and a measurement $y$, and would like to sample from $p(x \mid y)$. Posterior sampling is useful for tasks such as inpainting, super-resolution, and MRI reconstruction, so a number of recent works have given algorithms to heuristically approximate it; but none are known to converge to the correct distribution in polynomial time. In this paper we show that posterior sampling is \emph{computationally intractable}: under the most basic assumption in cryptography -- that one-way functions exist -- there are instances for which \emph{every} algorithm takes superpolynomial time, even though \emph{unconditional} sampling is provably fast. We also show that the exponential-time rejection sampling algorithm is essentially optimal under the stronger plausible assumption that there are one-way functions that take exponential time to invert.
Abstract:Score-based diffusion models have become the most popular approach to deep generative modeling of images, largely due to their empirical performance and reliability. Recently, a number of theoretical works \citep{chen2022, Chen2022ImprovedAO, Chenetal23flowode, benton2023linear} have shown that diffusion models can efficiently sample, assuming $L^2$-accurate score estimates. The score-matching objective naturally approximates the true score in $L^2$, but the sample complexity of existing bounds depends \emph{polynomially} on the data radius and desired Wasserstein accuracy. By contrast, the time complexity of sampling is only logarithmic in these parameters. We show that estimating the score in $L^2$ \emph{requires} this polynomial dependence, but that a number of samples that scales polylogarithmically in the Wasserstein accuracy actually do suffice for sampling. We show that with a polylogarithmic number of samples, the ERM of the score-matching objective is $L^2$ accurate on all but a probability $\delta$ fraction of the true distribution, and that this weaker guarantee is sufficient for efficient sampling.