Abstract:Network Intrusion Detection Systems (NIDS) have been extensively investigated by monitoring real network traffic and analyzing suspicious activities. However, there are limitations in detecting specific types of attacks with NIDS, such as Advanced Persistent Threats (APT). Additionally, NIDS is restricted in observing complete traffic information due to encrypted traffic or a lack of authority. To address these limitations, a Host-based Intrusion Detection system (HIDS) evaluates resources in the host, including logs, files, and folders, to identify APT attacks that routinely inject malicious files into victimized nodes. In this study, a hybrid network intrusion detection system that combines NIDS and HIDS is proposed to improve intrusion detection performance. The feature flattening technique is applied to flatten two-dimensional host-based features into one-dimensional vectors, which can be directly used by traditional Machine Learning (ML) models. A two-stage collaborative classifier is introduced that deploys two levels of ML algorithms to identify network intrusions. In the first stage, a binary classifier is used to detect benign samples. All detected attack types undergo a multi-class classifier to reduce the complexity of the original problem and improve the overall detection performance. The proposed method is shown to generalize across two well-known datasets, CICIDS 2018 and NDSec-1. Performance of XGBoost, which represents conventional ML, is evaluated. Combining host and network features enhances attack detection performance (macro average F1 score) by 8.1% under the CICIDS 2018 dataset and 3.7% under the NDSec-1 dataset. Meanwhile, the two-stage collaborative classifier improves detection performance for most single classes, especially for DoS-LOIC-UDP and DoS-SlowHTTPTest, with improvements of 30.7% and 84.3%, respectively, when compared with the traditional ML XGBoost.
Abstract:Despite its technological benefits, Internet of Things (IoT) has cyber weaknesses due to the vulnerabilities in the wireless medium. Machine learning (ML)-based methods are widely used against cyber threats in IoT networks with promising performance. Advanced persistent threat (APT) is prominent for cybercriminals to compromise networks, and it is crucial to long-term and harmful characteristics. However, it is difficult to apply ML-based approaches to identify APT attacks to obtain a promising detection performance due to an extremely small percentage among normal traffic. There are limited surveys to fully investigate APT attacks in IoT networks due to the lack of public datasets with all types of APT attacks. It is worth to bridge the state-of-the-art in network attack detection with APT attack detection in a comprehensive review article. This survey article reviews the security challenges in IoT networks and presents the well-known attacks, APT attacks, and threat models in IoT systems. Meanwhile, signature-based, anomaly-based, and hybrid intrusion detection systems are summarized for IoT networks. The article highlights statistical insights regarding frequently applied ML-based methods against network intrusion alongside the number of attacks types detected. Finally, open issues and challenges for common network intrusion and APT attacks are presented for future research.
Abstract:Mobile Crowdsensing systems are vulnerable to various attacks as they build on non-dedicated and ubiquitous properties. Machine learning (ML)-based approaches are widely investigated to build attack detection systems and ensure MCS systems security. However, adversaries that aim to clog the sensing front-end and MCS back-end leverage intelligent techniques, which are challenging for MCS platform and service providers to develop appropriate detection frameworks against these attacks. Generative Adversarial Networks (GANs) have been applied to generate synthetic samples, that are extremely similar to the real ones, deceiving classifiers such that the synthetic samples are indistinguishable from the originals. Previous works suggest that GAN-based attacks exhibit more crucial devastation than empirically designed attack samples, and result in low detection rate at the MCS platform. With this in mind, this paper aims to detect intelligently designed illegitimate sensing service requests by integrating a GAN-based model. To this end, we propose a two-level cascading classifier that combines the GAN discriminator with a binary classifier to prevent adversarial fake tasks. Through simulations, we compare our results to a single-level binary classifier, and the numeric results show that proposed approach raises Adversarial Attack Detection Rate (AADR), from $0\%$ to $97.5\%$ by KNN/NB, from $45.9\%$ to $100\%$ by Decision Tree. Meanwhile, with two-levels classifiers, Original Attack Detection Rate (OADR) improves for the three binary classifiers, with comparison, such as NB from $26.1\%$ to $61.5\%$.
Abstract:Mobile crowdsensing (MCS) leverages distributed and non-dedicated sensing concepts by utilizing sensors imbedded in a large number of mobile smart devices. However, the openness and distributed nature of MCS leads to various vulnerabilities and consequent challenges to address. A malicious user submitting fake sensing tasks to an MCS platform may be attempting to consume resources from any number of participants' devices; as well as attempting to clog the MCS server. In this paper, a novel approach that is based on horizontal federated learning is proposed to identify fake tasks that contain a number of independent detection devices and an aggregation entity. Detection devices are deployed to operate in parallel with each device equipped with a machine learning (ML) module, and an associated training dataset. Furthermore, the aggregation module collects the prediction results from individual devices and determines the final decision with the objective of minimizing the prediction loss. Loss measurement considers the lost task values with respect to misclassification, where the final decision utilizes a risk-aware approach where the risk is formulated as a function of the utility loss. Experimental results demonstrate that using federated learning-driven illegitimate task detection with a risk aware aggregation function improves the detection performance of the traditional centralized framework. Furthermore, the higher performance of detection and lower loss of utility can be achieved by the proposed framework. This scheme can even achieve 100%detection accuracy using small training datasets distributed across devices, while achieving slightly over an 8% increase in detection improvement over traditional approaches.