Abstract:Statistical dependencies between information sources are rarely known, yet in practical distributed tracking schemes, they must be taken into account in order to prevent track divergences. Chernoff fusion is well-known and universally accepted method that can address the problem of track fusion when the statistical dependence between the fusing sources is unknown. In this paper we derive the exact Chernoff fusion equations for Bernoulli Gaussian max filters. These filters have been recently derived in the framework of possibility theory, as the analog of the Bernoulli Gaussian sum filters. The main motivation for the possibilistic approach is that it effectively deals with imprecise mathematical models (e.g. dynamics, measurements) used in tracking algorithms. The paper also demonstrates the proposed possibilistic fusion scheme in the absence of knowledge about statistical dependence.
Abstract:Singing voice conversion is to convert the source sing voice into the target sing voice except for the content. Currently, flow-based models can complete the task of voice conversion, but they struggle to effectively extract latent variables in the more rhythmically rich and emotionally expressive task of singing voice conversion, while also facing issues with low efficiency in speech processing. In this paper, we propose a high-fidelity flow-based model based on multi-decoupling feature constraints, which enhances the capture of vocal details by integrating multiple encoders. We also use iSTFT to enhance the speed of speech processing by replacing some layers of the Vocoder. We compare the synthesized singing voice with other models from multiple dimensions, and our proposed model is highly consistent with the current state-of-the-art, with the demo which is available at \url{https://lazycat1119.github.io/RASVC-demo/}