Abstract:Fine-tuning large language models (LLMs) using diverse datasets is crucial for enhancing their overall performance across various domains. In practical scenarios, existing methods based on modeling the mixture proportions of data composition often struggle with data whose domain labels are missing, imprecise or non-normalized, while methods based on data selection usually encounter difficulties in balancing multi-domain performance. To address these challenges, in this paper, we study the role of data diversity in enhancing the overall abilities of LLMs by empirically constructing contrastive data pools and theoretically deriving explanations for both inter- and intra-diversity. Building upon the insights gained, we propose a new method that gives the LLM a dual identity: an output model to cognitively probe and select data based on diversity reward, as well as an input model to be tuned with the selected data. Extensive experiments show that the proposed method notably boosts performance across domain-undetermined data and a series of foundational downstream tasks when applied to various advanced LLMs. We release our code and hope this study can shed light on the understanding of data diversity and advance feedback-driven data-model co-development for LLMs.
Abstract:The confluence of Federated Learning (FL) and Large Language Models (LLMs) is ushering in a new era in privacy-preserving natural language processing. However, the intensive memory requirements for fine-tuning LLMs pose significant challenges, especially when deploying on clients with limited computational resources. To circumvent this, we explore the novel integration of Memory-efficient Zeroth-Order Optimization within a federated setting, a synergy we term as FedMeZO. Our study is the first to examine the theoretical underpinnings of FedMeZO in the context of LLMs, tackling key questions regarding the influence of large parameter spaces on optimization behavior, the establishment of convergence properties, and the identification of critical parameters for convergence to inform personalized federated strategies. Our extensive empirical evidence supports the theory, showing that FedMeZO not only converges faster than traditional first-order methods such as FedAvg but also significantly reduces GPU memory usage during training to levels comparable to those during inference. Moreover, the proposed personalized FL strategy that is built upon the theoretical insights to customize the client-wise learning rate can effectively accelerate loss reduction. We hope our work can help to bridge theoretical and practical aspects of federated fine-tuning for LLMs, thereby stimulating further advancements and research in this area.