Abstract:Currently, low-resolution image recognition is confronted with a significant challenge in the field of intelligent traffic perception. Compared to high-resolution images, low-resolution images suffer from small size, low quality, and lack of detail, leading to a notable decrease in the accuracy of traditional neural network recognition algorithms. The key to low-resolution image recognition lies in effective feature extraction. Therefore, this paper delves into the fundamental dimensions of residual modules and their impact on feature extraction and computational efficiency. Based on experiments, we introduce a dual-branch residual network structure that leverages the basic architecture of residual networks and a common feature subspace algorithm. Additionally, it incorporates the utilization of intermediate-layer features to enhance the accuracy of low-resolution image recognition. Furthermore, we employ knowledge distillation to reduce network parameters and computational overhead. Experimental results validate the effectiveness of this algorithm for low-resolution image recognition in traffic environments.
Abstract:Trajectory prediction and behavioral decision-making are two important tasks for autonomous vehicles that require good understanding of the environmental context; behavioral decisions are better made by referring to the outputs of trajectory predictions. However, most current solutions perform these two tasks separately. Therefore, a joint neural network that combines multiple cues is proposed and named as the holistic transformer to predict trajectories and make behavioral decisions simultaneously. To better explore the intrinsic relationships between cues, the network uses existing knowledge and adopts three kinds of attention mechanisms: the sparse multi-head type for reducing noise impact, feature selection sparse type for optimally using partial prior knowledge, and multi-head with sigmoid activation type for optimally using posteriori knowledge. Compared with other trajectory prediction models, the proposed model has better comprehensive performance and good interpretability. Perceptual noise robustness experiments demonstrate that the proposed model has good noise robustness. Thus, simultaneous trajectory prediction and behavioral decision-making combining multiple cues can reduce computational costs and enhance semantic relationships between scenes and agents.