Abstract:Although Mamba models significantly improve hyperspectral image (HSI) classification, one critical challenge is the difficulty in building the sequence of Mamba tokens efficiently. This paper presents a Sparse Deformable Mamba (SDMamba) approach for enhanced HSI classification, with the following contributions. First, to enhance Mamba sequence, an efficient Sparse Deformable Sequencing (SDS) approach is designed to adaptively learn the ''optimal" sequence, leading to sparse and deformable Mamba sequence with increased detail preservation and decreased computations. Second, to boost spatial-spectral feature learning, based on SDS, a Sparse Deformable Spatial Mamba Module (SDSpaM) and a Sparse Deformable Spectral Mamba Module (SDSpeM) are designed for tailored modeling of the spatial information spectral information. Last, to improve the fusion of SDSpaM and SDSpeM, an attention based feature fusion approach is designed to integrate the outputs of the SDSpaM and SDSpeM. The proposed method is tested on several benchmark datasets with many state-of-the-art approaches, demonstrating that the proposed approach can achieve higher accuracy with less computation, and better detail small-class preservation capability.
Abstract:Facing the escalating threat of global wildfires, numerous computer vision techniques using remote sensing data have been applied in this area. However, the selection of deep learning methods for wildfire prediction remains uncertain due to the lack of comparative analysis in a quantitative and explainable manner, crucial for improving prevention measures and refining models. This study aims to thoroughly compare the performance, efficiency, and explainability of four prevalent deep learning architectures: Autoencoder, ResNet, UNet, and Transformer-based Swin-UNet. Employing a real-world dataset that includes nearly a decade of remote sensing data from California, U.S., these models predict the spread of wildfires for the following day. Through detailed quantitative comparison analysis, we discovered that Transformer-based Swin-UNet and UNet generally outperform Autoencoder and ResNet, particularly due to the advanced attention mechanisms in Transformer-based Swin-UNet and the efficient use of skip connections in both UNet and Transformer-based Swin-UNet, which contribute to superior predictive accuracy and model interpretability. Then we applied XAI techniques on all four models, this not only enhances the clarity and trustworthiness of models but also promotes focused improvements in wildfire prediction capabilities. The XAI analysis reveals that UNet and Transformer-based Swin-UNet are able to focus on critical features such as 'Previous Fire Mask', 'Drought', and 'Vegetation' more effectively than the other two models, while also maintaining balanced attention to the remaining features, leading to their superior performance. The insights from our thorough comparative analysis offer substantial implications for future model design and also provide guidance for model selection in different scenarios.
Abstract:Wildfires have significant impacts on global vegetation, wildlife, and humans. They destroy plant communities and wildlife habitats and contribute to increased emissions of carbon dioxide, nitrogen oxides, methane, and other pollutants. The prediction of wildfires relies on various independent variables combined with regression or machine learning methods. In this technical review, we describe the options for independent variables, data processing techniques, models, independent variables collinearity and importance estimation methods, and model performance evaluation metrics. First, we divide the independent variables into 4 aspects, including climate and meteorology conditions, socio-economical factors, terrain and hydrological features, and wildfire historical records. Second, preprocessing methods are described for different magnitudes, different spatial-temporal resolutions, and different formats of data. Third, the collinearity and importance evaluation methods of independent variables are also considered. Fourth, we discuss the application of statistical models, traditional machine learning models, and deep learning models in wildfire risk prediction. In this subsection, compared with other reviews, this manuscript particularly discusses the evaluation metrics and recent advancements in deep learning methods. Lastly, addressing the limitations of current research, this paper emphasizes the need for more effective deep learning time series forecasting algorithms, the utilization of three-dimensional data including ground and trunk fuel, extraction of more accurate historical fire point data, and improved model evaluation metrics.