Abstract:Deep sequence recognition (DSR) models receive increasing attention due to their superior application to various applications. Most DSR models use merely the target sequences as supervision without considering other related sequences, leading to over-confidence in their predictions. The DSR models trained with label smoothing regularize labels by equally and independently smoothing each token, reallocating a small value to other tokens for mitigating overconfidence. However, they do not consider tokens/sequences correlations that may provide more effective information to regularize training and thus lead to sub-optimal performance. In this work, we find tokens/sequences with high perception and semantic correlations with the target ones contain more correlated and effective information and thus facilitate more effective regularization. To this end, we propose a Perception and Semantic aware Sequence Regularization framework, which explore perceptively and semantically correlated tokens/sequences as regularization. Specifically, we introduce a semantic context-free recognition and a language model to acquire similar sequences with high perceptive similarities and semantic correlation, respectively. Moreover, over-confidence degree varies across samples according to their difficulties. Thus, we further design an adaptive calibration intensity module to compute a difficulty score for each samples to obtain finer-grained regularization. Extensive experiments on canonical sequence recognition tasks, including scene text and speech recognition, demonstrate that our method sets novel state-of-the-art results. Code is available at https://github.com/husterpzh/PSSR.
Abstract:Many important tasks such as forensic signature verification, calligraphy synthesis, etc, rely on handwriting trajectory recovery of which, however, even an appropriate evaluation metric is still missing. Indeed, existing metrics only focus on the writing orders but overlook the fidelity of glyphs. Taking both facets into account, we come up with two new metrics, the adaptive intersection on union (AIoU) which eliminates the influence of various stroke widths, and the length-independent dynamic time warping (LDTW) which solves the trajectory-point alignment problem. After that, we then propose a novel handwriting trajectory recovery model named Parsing-and-tracing ENcoder-decoder Network (PEN-Net), in particular for characters with both complex glyph and long trajectory, which was believed very challenging. In the PEN-Net, a carefully designed double-stream parsing encoder parses the glyph structure, and a global tracing decoder overcomes the memory difficulty of long trajectory prediction. Our experiments demonstrate that the two new metrics AIoU and LDTW together can truly assess the quality of handwriting trajectory recovery and the proposed PEN-Net exhibits satisfactory performance in various complex-glyph languages including Chinese, Japanese and Indic.