Abstract:Symmetry detection has been a classical problem in computer graphics, many of which using traditional geometric methods. In recent years, however, we have witnessed the arising deep learning changed the landscape of computer graphics. In this paper, we aim to solve the symmetry detection of the occluded point cloud in a deep-learning fashion. To the best of our knowledge, we are the first to utilize deep learning to tackle such a problem. In such a deep learning framework, double supervisions: points on the symmetry plane and normal vectors are employed to help us pinpoint the symmetry plane. We conducted experiments on the YCB- video dataset and demonstrate the efficacy of our method.
Abstract:Indoor scenes exhibit rich hierarchical structure in 3D object layouts. Many tasks in 3D scene understanding can benefit from reasoning jointly about the hierarchical context of a scene, and the identities of objects. We present a variational denoising recursive autoencoder (VDRAE) that generates and iteratively refines a hierarchical representation of 3D object layouts, interleaving bottom-up encoding for context aggregation and top-down decoding for propagation. We train our VDRAE on large-scale 3D scene datasets to predict both instance-level segmentations and a 3D object detections from an over-segmentation of an input point cloud. We show that our VDRAE improves object detection performance on real-world 3D point cloud datasets compared to baselines from prior work.