Abstract:Recent advancements in deep learning techniques have sparked performance boosts in various real-world applications including disease diagnosis based on multi-modal medical data. Cough sound data-based respiratory disease (e.g., COVID-19 and Chronic Obstructive Pulmonary Disease) diagnosis has also attracted much attention. However, existing works usually utilise traditional machine learning or deep models of moderate scales. On the other hand, the developed approaches are trained and evaluated on small-scale data due to the difficulty of curating and annotating clinical data on scale. To address these issues in prior works, we create a unified framework to evaluate various deep models from lightweight Convolutional Neural Networks (e.g., ResNet18) to modern vision transformers and compare their performance in respiratory disease classification. Based on the observations from such an extensive empirical study, we propose a novel approach to cough-based disease classification based on both self-supervised and supervised learning on a large-scale cough data set. Experimental results demonstrate our proposed approach outperforms prior arts consistently on two benchmark datasets for COVID-19 diagnosis and a proprietary dataset for COPD/non-COPD classification with an AUROC of 92.5%.
Abstract:Most machine learning models for audio tasks are dealing with a handcrafted feature, the spectrogram. However, it is still unknown whether the spectrogram could be replaced with deep learning based features. In this paper, we answer this question by comparing the different learnable neural networks extracting features with a successful spectrogram model and proposed a General Audio Feature eXtractor (GAFX) based on a dual U-Net (GAFX-U), ResNet (GAFX-R), and Attention (GAFX-A) modules. We design experiments to evaluate this model on the music genre classification task on the GTZAN dataset and perform a detailed ablation study of different configurations of our framework and our model GAFX-U, following the Audio Spectrogram Transformer (AST) classifier achieves competitive performance.