Abstract:In this paper, we consider an reconfigurable intelligent surface (RIS)-aided frequency division duplex (FDD) massive multiple-input multiple-output (MIMO) downlink system.In the FDD systems, the downlink channel state information (CSI) should be sent to the base station through the feedback link. However, the overhead of CSI feedback occupies substantial uplink bandwidth resources in RIS-aided communication systems. In this work, we propose a deep learning (DL)-based scheme to reduce the overhead of CSI feedback by compressing the cascaded CSI. In the practical RIS-aided communication systems, the cascaded channel at the adjacent slots inevitably has time correlation. We use long short-term memory to learn time correlation, which can help the neural network to improve the recovery quality of the compressed CSI. Moreover, the attention mechanism is introduced to further improve the CSI recovery quality. Simulation results demonstrate that our proposed DLbased scheme can significantly outperform other DL-based methods in terms of the CSI recovery quality
Abstract:Training deep neural network (DNN) models, which has become an important task in today's software development, is often costly in terms of computational resources and time. With the inspiration of software reuse, building DNN models through reusing existing ones has gained increasing attention recently. Prior approaches to DNN model reuse have two main limitations: 1) reusing the entire model, while only a small part of the model's functionalities (labels) are required, would cause much overhead (e.g., computational and time costs for inference), and 2) model reuse would inherit the defects and weaknesses of the reused model, and hence put the new system under threats of security attack. To solve the above problem, we propose SeaM, a tool that re-engineers a trained DNN model to improve its reusability. Specifically, given a target problem and a trained model, SeaM utilizes a gradient-based search method to search for the model's weights that are relevant to the target problem. The re-engineered model that only retains the relevant weights is then reused to solve the target problem. Evaluation results on widely-used models show that the re-engineered models produced by SeaM only contain 10.11% weights of the original models, resulting 42.41% reduction in terms of inference time. For the target problem, the re-engineered models even outperform the original models in classification accuracy by 5.85%. Moreover, reusing the re-engineered models inherits an average of 57% fewer defects than reusing the entire model. We believe our approach to reducing reuse overhead and defect inheritance is one important step forward for practical model reuse.