Abstract:Text-based games -- in which an agent interacts with the world through textual natural language -- present us with the problem of combinatorially-sized action-spaces. Most current reinforcement learning algorithms are not capable of effectively handling such a large number of possible actions per turn. Poor sample efficiency, consequently, results in agents that are unable to pass bottleneck states, where they are unable to proceed because they do not see the right action sequence to pass the bottleneck enough times to be sufficiently reinforced. Building on prior work using knowledge graphs in reinforcement learning, we introduce two new game state exploration strategies. We compare our exploration strategies against strong baselines on the classic text-adventure game, Zork1, where prior agent have been unable to get past a bottleneck where the agent is eaten by a Grue.
Abstract:Neural network based approaches to automated story plot generation attempt to learn how to generate novel plots from a corpus of natural language plot summaries. Prior work has shown that a semantic abstraction of sentences called events improves neural plot generation and and allows one to decompose the problem into: (1) the generation of a sequence of events (event-to-event) and (2) the transformation of these events into natural language sentences (event-to-sentence). However, typical neural language generation approaches to event-to-sentence can ignore the event details and produce grammatically-correct but semantically-unrelated sentences. We present an ensemble-based model that generates natural language guided by events.We provide results---including a human subjects study---for a full end-to-end automated story generation system showing that our method generates more coherent and plausible stories than baseline approaches.