Abstract:One of the major errors affecting GNSS signals in urban canyons is GNSS multipath error. In this work, we develop a Gazebo plugin which utilizes a ray tracing technique to account for multipath effects in a virtual urban canyon environment using virtual satellites. This software plugin balances accuracy and computational complexity to run the simulation in real-time for both software-in-the-loop (SITL) and hardware-in-the-loop (HITL) testing. We also construct a 3D virtual environment of Hong Kong and compare the results from our plugin with the GNSS data in the publicly available Urban-Nav dataset, to validate the efficacy of the proposed Gazebo Plugin. The plugin is openly available to all the researchers in the robotics community. https://github.com/kpant14/multipath_sim
Abstract:Given the fast growth of intelligent devices, it is expected that a large number of high-stake artificial intelligence (AI) applications, e.g., drones, autonomous cars, tactile robots, will be deployed at the edge of wireless networks in the near future. As such, the intelligent communication networks will be designed to leverage advanced wireless techniques and edge computing technologies to support AI-enabled applications at various end devices with limited communication, computation, hardware and energy resources. In this article, we shall present the principles of efficient deployment of model inference at network edge to provide low-latency and energy-efficient AI services. This includes the wireless distributed computing framework for low-latency device distributed model inference as well as the wireless cooperative transmission strategy for energy-efficient edge cooperative model inference. The communication efficiency of edge inference systems is further improved by building up a smart radio propagation environment via intelligent reflecting surface.
Abstract:Intelligent Internet-of-Things (IoT) will be transformative with the advancement of artificial intelligence and high-dimensional data analysis, shifting from "connected things" to "connected intelligence". This shall unleash the full potential of intelligent IoT in a plethora of exciting applications, such as self-driving cars, unmanned aerial vehicles, healthcare, robotics, and supply chain finance. These applications drive the need of developing revolutionary computation, communication and artificial intelligence technologies that can make low-latency decisions with massive real-time data. To this end, federated machine learning, as a disruptive technology, is emerged to distill intelligence from the data at network edge, while guaranteeing device privacy and data security. However, the limited communication bandwidth is a key bottleneck of model aggregation for federated machine learning over radio channels. In this article, we shall develop an over-the-air computation based communication-efficient federated machine learning framework for intelligent IoT networks via exploiting the waveform superposition property of a multi-access channel. Reconfigurable intelligent surface is further leveraged to reduce the model aggregation error via enhancing the signal strength by reconfiguring the wireless propagation environments.