Abstract:Sequential recommendation (SR) has seen significant advancements with the help of Pre-trained Language Models (PLMs). Some PLM-based SR models directly use PLM to encode user historical behavior's text sequences to learn user representations, while there is seldom an in-depth exploration of the capability and suitability of PLM in behavior sequence modeling. In this work, we first conduct extensive model analyses between PLMs and PLM-based SR models, discovering great underutilization and parameter redundancy of PLMs in behavior sequence modeling. Inspired by this, we explore different lightweight usages of PLMs in SR, aiming to maximally stimulate the ability of PLMs for SR while satisfying the efficiency and usability demands of practical systems. We discover that adopting behavior-tuned PLMs for item initializations of conventional ID-based SR models is the most economical framework of PLM-based SR, which would not bring in any additional inference cost but could achieve a dramatic performance boost compared with the original version. Extensive experiments on five datasets show that our simple and universal framework leads to significant improvement compared to classical SR and SOTA PLM-based SR models without additional inference costs.
Abstract:With the thriving of pre-trained language model (PLM) widely verified in various of NLP tasks, pioneer efforts attempt to explore the possible cooperation of the general textual information in PLM with the personalized behavioral information in user historical behavior sequences to enhance sequential recommendation (SR). However, despite the commonalities of input format and task goal, there are huge gaps between the behavioral and textual information, which obstruct thoroughly modeling SR as language modeling via PLM. To bridge the gap, we propose a novel Unified pre-trained language model enhanced sequential recommendation (UPSR), aiming to build a unified pre-trained recommendation model for multi-domain recommendation tasks. We formally design five key indicators, namely naturalness, domain consistency, informativeness, noise & ambiguity, and text length, to guide the text->item adaptation and behavior sequence->text sequence adaptation differently for pre-training and fine-tuning stages, which are essential but under-explored by previous works. In experiments, we conduct extensive evaluations on seven datasets with both tuning and zero-shot settings and achieve the overall best performance. Comprehensive model analyses also provide valuable insights for behavior modeling via PLM, shedding light on large pre-trained recommendation models. The source codes will be released in the future.