Abstract:The task of drug-target interaction prediction holds significant importance in pharmacology and therapeutic drug design. In this paper, we present FRnet-DTI, an auto encoder and a convolutional classifier for feature manipulation and drug target interaction prediction. Two convolutional neural neworks are proposed where one model is used for feature manipulation and the other one for classification. Using the first method FRnet-1, we generate 4096 features for each of the instances in each of the datasets and use the second method, FRnet-2, to identify interaction probability employing those features. We have tested our method on four gold standard datasets exhaustively used by other researchers. Experimental results shows that our method significantly improves over the state-of-the-art method on three of the four drug-target interaction gold standard datasets on both area under curve for Receiver Operating Characteristic(auROC) and area under Precision Recall curve(auPR) metric. We also introduce twenty new potential drug-target pairs for interaction based on high prediction scores. Codes Available: https: // github. com/ farshidrayhanuiu/ FRnet-DTI/ Web Implementation: http: // farshidrayhan. pythonanywhere. com/ FRnet-DTI/