Abstract:ChatGPT is a conversational artificial intelligence that is a member of the generative pre-trained transformer of the large language model family. This text generative model was fine-tuned by both supervised learning and reinforcement learning so that it can produce text documents that seem to be written by natural intelligence. Although there are numerous advantages of this generative model, it comes with some reasonable concerns as well. This paper presents a machine learning-based solution that can identify the ChatGPT delivered text from the human written text along with the comparative analysis of a total of 11 machine learning and deep learning algorithms in the classification process. We have tested the proposed model on a Kaggle dataset consisting of 10,000 texts out of which 5,204 texts were written by humans and collected from news and social media. On the corpus generated by GPT-3.5, the proposed algorithm presents an accuracy of 77%.
Abstract:The task of drug-target interaction prediction holds significant importance in pharmacology and therapeutic drug design. In this paper, we present FRnet-DTI, an auto encoder and a convolutional classifier for feature manipulation and drug target interaction prediction. Two convolutional neural neworks are proposed where one model is used for feature manipulation and the other one for classification. Using the first method FRnet-1, we generate 4096 features for each of the instances in each of the datasets and use the second method, FRnet-2, to identify interaction probability employing those features. We have tested our method on four gold standard datasets exhaustively used by other researchers. Experimental results shows that our method significantly improves over the state-of-the-art method on three of the four drug-target interaction gold standard datasets on both area under curve for Receiver Operating Characteristic(auROC) and area under Precision Recall curve(auPR) metric. We also introduce twenty new potential drug-target pairs for interaction based on high prediction scores. Codes Available: https: // github. com/ farshidrayhanuiu/ FRnet-DTI/ Web Implementation: http: // farshidrayhan. pythonanywhere. com/ FRnet-DTI/