Abstract:Trustworthy reasoning in Large Language Models (LLMs) is challenged by their propensity for hallucination. While augmenting LLMs with Knowledge Graphs (KGs) improves factual accuracy, existing KG-augmented methods fail to quantify epistemic uncertainty in both the retrieved evidence and LLMs' reasoning. To bridge this gap, we introduce DoublyCal, a framework built on a novel double-calibration principle. DoublyCal employs a lightweight proxy model to first generate KG evidence alongside a calibrated evidence confidence. This calibrated supporting evidence then guides a black-box LLM, yielding final predictions that are not only more accurate but also well-calibrated, with confidence scores traceable to the uncertainty of the supporting evidence. Experiments on knowledge-intensive benchmarks show that DoublyCal significantly improves both the accuracy and confidence calibration of black-box LLMs with low token cost.
Abstract:Topic taxonomy discovery aims at uncovering topics of different abstraction levels and constructing hierarchical relations between them. Unfortunately, most of prior work can hardly model semantic scopes of words and topics by holding the Euclidean embedding space assumption. What's worse, they infer asymmetric hierarchical relations by symmetric distances between topic embeddings. As a result, existing methods suffer from problems of low-quality topics at high abstraction levels and inaccurate hierarchical relations. To alleviate these problems, this paper develops a Box embedding-based Topic Model (BoxTM) that maps words and topics into the box embedding space, where the asymmetric metric is defined to properly infer hierarchical relations among topics. Additionally, our BoxTM explicitly infers upper-level topics based on correlation between specific topics through recursive clustering on topic boxes. Finally, extensive experiments validate high-quality of the topic taxonomy learned by BoxTM.