Abstract:Audio diffusion models can synthesize a wide variety of sounds. Existing models often operate on the latent domain with cascaded phase recovery modules to reconstruct waveform. This poses challenges when generating high-fidelity audio. In this paper, we propose EDMSound, a diffusion-based generative model in spectrogram domain under the framework of elucidated diffusion models (EDM). Combining with efficient deterministic sampler, we achieved similar Fr\'echet audio distance (FAD) score as top-ranked baseline with only 10 steps and reached state-of-the-art performance with 50 steps on the DCASE2023 foley sound generation benchmark. We also revealed a potential concern regarding diffusion based audio generation models that they tend to generate samples with high perceptual similarity to the data from training data. Project page: https://agentcooper2002.github.io/EDMSound/
Abstract:Individualized head-related transfer functions (HRTFs) are crucial for accurate sound positioning in virtual auditory displays. As the acoustic measurement of HRTFs is resource-intensive, predicting individualized HRTFs using machine learning models is a promising approach at scale. Training such models require a unified HRTF representation across multiple databases to utilize their respectively limited samples. However, in addition to differences on the spatial sampling locations, recent studies have shown that, even for the common location, HRTFs across databases manifest consistent differences that make it trivial to tell which databases they come from. This poses a significant challenge for learning a unified HRTF representation across databases. In this work, we first identify the possible causes of these cross-database differences, attributing them to variations in the measurement setup. Then, we propose a novel approach to normalize the frequency responses of HRTFs across databases. We show that HRTFs from different databases cannot be classified by their database after normalization. We further show that these normalized HRTFs can be used to learn a more unified HRTF representation across databases than the prior art. We believe that this normalization approach paves the road to many data-intensive tasks on HRTF modeling.