Abstract:Large Language Models (LLMs) have demonstrated remarkable proficiency in human interactions, yet their application within the medical field remains insufficiently explored. Previous works mainly focus on the performance of medical knowledge with examinations, which is far from the realistic scenarios, falling short in assessing the abilities of LLMs on clinical tasks. In the quest to enhance the application of Large Language Models (LLMs) in healthcare, this paper introduces the Automated Interactive Evaluation (AIE) framework and the State-Aware Patient Simulator (SAPS), targeting the gap between traditional LLM evaluations and the nuanced demands of clinical practice. Unlike prior methods that rely on static medical knowledge assessments, AIE and SAPS provide a dynamic, realistic platform for assessing LLMs through multi-turn doctor-patient simulations. This approach offers a closer approximation to real clinical scenarios and allows for a detailed analysis of LLM behaviors in response to complex patient interactions. Our extensive experimental validation demonstrates the effectiveness of the AIE framework, with outcomes that align well with human evaluations, underscoring its potential to revolutionize medical LLM testing for improved healthcare delivery.
Abstract:Large language models (LLMs) have achieved significant success in interacting with human. However, recent studies have revealed that these models often suffer from hallucinations, leading to overly confident but incorrect judgments. This limits their application in the medical domain, where tasks require the utmost accuracy. This paper introduces an automated evaluation framework that assesses the practical capabilities of LLMs as virtual doctors during multi-turn consultations. Consultation tasks are designed to require LLMs to be aware of what they do not know, to inquire about missing medical information from patients, and to ultimately make diagnoses. To evaluate the performance of LLMs for these tasks, a benchmark is proposed by reformulating medical multiple-choice questions from the United States Medical Licensing Examinations (USMLE), and comprehensive evaluation metrics are developed and evaluated on three constructed test sets. A medical consultation training set is further constructed to improve the consultation ability of LLMs. The results of the experiments show that fine-tuning with the training set can alleviate hallucinations and improve LLMs' performance on the proposed benchmark. Extensive experiments and ablation studies are conducted to validate the effectiveness and robustness of the proposed framework.