Abstract:Local detection of magnetic fields is crucial for characterizing nano- and micro-materials and has been implemented using various scanning techniques or even diamond quantum sensors. Diamond nanoparticles (nanodiamonds) offer an attractive opportunity to chieve high spatial resolution because they can easily be close to the target within a few 10 nm simply by attaching them to its surface. A physical model for such a randomly oriented nanodiamond ensemble (NDE) is available, but the complexity of actual experimental conditions still limits the accuracy of deducing magnetic fields. Here, we demonstrate magnetic field imaging with high accuracy of 1.8 $\mu$T combining NDE and machine learning without any physical models. We also discover the field direction dependence of the NDE signal, suggesting the potential application for vector magnetometry and improvement of the existing model. Our method further enriches the performance of NDE to achieve the accuracy to visualize mesoscopic current and magnetism in atomic-layer materials and to expand the applicability in arbitrarily shaped materials, including living organisms. This achievement will bridge machine learning and quantum sensing for accurate measurements.
Abstract:We generalize a standard benchmark of reinforcement learning, the classical cartpole balancing problem, to the quantum regime by stabilizing a particle in an unstable potential through measurement and feedback. We use the state-of-the-art deep reinforcement learning to stabilize the quantum cartpole and find that our deep learning approach performs comparably to or better than other strategies in standard control theory. Our approach also applies to measurement-feedback cooling of quantum oscillators, showing the applicability of deep learning to general continuous-space quantum control.