Abstract:Graph deep learning models, such as graph convolutional networks (GCN) achieve remarkable performance for tasks on graph data. Similar to other types of deep models, graph deep learning models often suffer from adversarial attacks. However, compared with non-graph data, the discrete features, graph connections and different definitions of imperceptible perturbations bring unique challenges and opportunities for the adversarial attacks and defences for graph data. In this paper, we propose both attack and defence techniques. For attack, we show that the discrete feature problem could easily be resolved by introducing integrated gradients which could accurately reflect the effect of perturbing certain features or edges while still benefiting from the parallel computations. For defence, we propose to partially learn the adjacency matrix to integrate the information of distant nodes so that the prediction of a certain target is supported by more global graph information rather than just few neighbour nodes. This, therefore, makes the attacks harder since one need to perturb more features/edges to make the attacks succeed. Our experiments on a number of datasets show the effectiveness of the proposed methods.
Abstract:An important part of many machine learning workflows on graphs is vertex representation learning, i.e., learning a low-dimensional vector representation for each vertex in the graph. Recently, several powerful techniques for unsupervised representation learning have been demonstrated to give the state-of-the-art performance in downstream tasks such as vertex classification and edge prediction. These techniques rely on random walks performed on the graph in order to capture its structural properties. These structural properties are then encoded in the vector representation space. However, most contemporary representation learning methods only apply to static graphs while real-world graphs are often dynamic and change over time. Static representation learning methods are not able to update the vector representations when the graph changes; therefore, they must re-generate the vector representations on an updated static snapshot of the graph regardless of the extent of the change in the graph. In this work, we propose computationally efficient algorithms for vertex representation learning that extend random walk based methods to dynamic graphs. The computation complexity of our algorithms depends upon the extent and rate of changes (the number of edges changed per update) and on the density of the graph. We empirically evaluate our algorithms on real world datasets for downstream machine learning tasks of multi-class and multi-label vertex classification. The results show that our algorithms can achieve competitive results to the state-of-the-art methods while being computationally efficient.
Abstract:Relational data sources are still one of the most popular ways to store enterprise or Web data, however, the issue with relational schema is the lack of a well-defined semantic description. A common ontology provides a way to represent the meaning of a relational schema and can facilitate the integration of heterogeneous data sources within a domain. Semantic labeling is achieved by mapping attributes from the data sources to the classes and properties in the ontology. We formulate this problem as a multi-class classification problem where previously labeled data sources are used to learn rules for labeling new data sources. The majority of existing approaches for semantic labeling have focused on data integration challenges such as naming conflicts and semantic heterogeneity. In addition, machine learning approaches typically have issues around class imbalance, lack of labeled instances and relative importance of attributes. To address these issues, we develop a new machine learning model with engineered features as well as two deep learning models which do not require extensive feature engineering. We evaluate our new approaches with the state-of-the-art.