Abstract:Graph deep learning models, such as graph convolutional networks (GCN) achieve remarkable performance for tasks on graph data. Similar to other types of deep models, graph deep learning models often suffer from adversarial attacks. However, compared with non-graph data, the discrete features, graph connections and different definitions of imperceptible perturbations bring unique challenges and opportunities for the adversarial attacks and defences for graph data. In this paper, we propose both attack and defence techniques. For attack, we show that the discrete feature problem could easily be resolved by introducing integrated gradients which could accurately reflect the effect of perturbing certain features or edges while still benefiting from the parallel computations. For defence, we propose to partially learn the adjacency matrix to integrate the information of distant nodes so that the prediction of a certain target is supported by more global graph information rather than just few neighbour nodes. This, therefore, makes the attacks harder since one need to perturb more features/edges to make the attacks succeed. Our experiments on a number of datasets show the effectiveness of the proposed methods.