Abstract:Emerging technologies such as digital twins and 6th Generation mobile networks (6G) have accelerated the realization of edge intelligence in Industrial Internet of Things (IIoT). The integration of digital twin and 6G bridges the physical system with digital space and enables robust instant wireless connectivity. With increasing concerns on data privacy, federated learning has been regarded as a promising solution for deploying distributed data processing and learning in wireless networks. However, unreliable communication channels, limited resources, and lack of trust among users, hinder the effective application of federated learning in IIoT. In this paper, we introduce the Digital Twin Wireless Networks (DTWN) by incorporating digital twins into wireless networks, to migrate real-time data processing and computation to the edge plane. Then, we propose a blockchain empowered federated learning framework running in the DTWN for collaborative computing, which improves the reliability and security of the system, and enhances data privacy. Moreover, to balance the learning accuracy and time cost of the proposed scheme, we formulate an optimization problem for edge association by jointly considering digital twin association, training data batch size, and bandwidth allocation. We exploit multi-agent reinforcement learning to find an optimal solution to the problem. Numerical results on real-world dataset show that the proposed scheme yields improved efficiency and reduced cost compared to benchmark learning method.
Abstract:Deep reinforcement learning (RL) has achieved outstanding results in recent years, which has led a dramatic increase in the number of methods and applications. Recent works are exploring learning beyond single-agent scenarios and considering multi-agent scenarios. However, they are faced with lots of challenges and are seeking for help from traditional game-theoretic algorithms, which, in turn, show bright application promise combined with modern algorithms and boosting computing power. In this survey, we first introduce basic concepts and algorithms in single agent RL and multi-agent systems; then, we summarize the related algorithms from three aspects. Solution concepts from game theory give inspiration to algorithms which try to evaluate the agents or find better solutions in multi-agent systems. Fictitious self-play becomes popular and has a great impact on the algorithm of multi-agent reinforcement learning. Counterfactual regret minimization is an important tool to solve games with incomplete information, and has shown great strength when combined with deep learning.