Abstract:In optoelectronics, designing free-form metasurfaces presents significant challenges, particularly in achieving high electromagnetic response fidelity due to the complex relationship between physical structures and electromagnetic behaviors. A key difficulty arises from the one-to-many mapping dilemma, where multiple distinct physical structures can yield similar electromagnetic responses, complicating the design process. This paper introduces a novel generative framework, the Anchor-controlled Generative Adversarial Network (AcGAN), which prioritizes electromagnetic fidelity while effectively navigating the one-to-many challenge to create structurally diverse metasurfaces. Unlike existing methods that mainly replicate physical appearances, AcGAN excels in generating a variety of structures that, despite their differences in physical attributes, exhibit similar electromagnetic responses, thereby accommodating fabrication constraints and tolerances. We introduce the Spectral Overlap Coefficient (SOC) as a precise metric to measure the spectral fidelity between generated designs and their targets. Additionally, a cluster-guided controller refines input processing, ensuring multi-level spectral integration and enhancing electromagnetic fidelity. The integration of AnchorNet into our loss function facilitates a nuanced assessment of electromagnetic qualities, supported by a dynamic loss weighting strategy that optimizes spectral alignment. Collectively, these innovations represent a transformative stride in metasurface inverse design, advancing electromagnetic response-oriented engineering and overcoming the complexities of the one-to-many mapping dilemma.Empirical evidence underscores AcGAN's effectiveness in streamlining the design process, achieving superior electromagnetic precision, and fostering a broad spectrum of design possibilities.
Abstract:The dynamic job-shop scheduling problem (DJSP) is a class of scheduling tasks that specifically consider the inherent uncertainties such as changing order requirements and possible machine breakdown in realistic smart manufacturing settings. Since traditional methods cannot dynamically generate effective scheduling strategies in face of the disturbance of environments, we formulate the DJSP as a Markov decision process (MDP) to be tackled by reinforcement learning (RL). For this purpose, we propose a flexible hybrid framework that takes disjunctive graphs as states and a set of general dispatching rules as the action space with minimum prior domain knowledge. The attention mechanism is used as the graph representation learning (GRL) module for the feature extraction of states, and the double dueling deep Q-network with prioritized replay and noisy networks (D3QPN) is employed to map each state to the most appropriate dispatching rule. Furthermore, we present Gymjsp, a public benchmark based on the well-known OR-Library, to provide a standardized off-the-shelf facility for RL and DJSP research communities. Comprehensive experiments on various DJSP instances confirm that our proposed framework is superior to baseline algorithms with smaller makespan across all instances and provide empirical justification for the validity of the various components in the hybrid framework.