Abstract:RGB-based camouflaged object detection struggles in real-world scenarios where color and texture cues are ambiguous. While hyperspectral image offers a powerful alternative by capturing fine-grained spectral signatures, progress in hyperspectral camouflaged object detection (HCOD) has been critically hampered by the absence of a dedicated, large-scale benchmark. To spur innovation, we introduce HyperCOD, the first challenging benchmark for HCOD. Comprising 350 high-resolution hyperspectral images, It features complex real-world scenarios with minimal objects, intricate shapes, severe occlusions, and dynamic lighting to challenge current models. The advent of foundation models like the Segment Anything Model (SAM) presents a compelling opportunity. To adapt the Segment Anything Model (SAM) for HCOD, we propose HyperSpectral Camouflage-aware SAM (HSC-SAM). HSC-SAM ingeniously reformulates the hyperspectral image by decoupling it into a spatial map fed to SAM's image encoder and a spectral saliency map that serves as an adaptive prompt. This translation effectively bridges the modality gap. Extensive experiments show that HSC-SAM sets a new state-of-the-art on HyperCOD and generalizes robustly to other public HSI datasets. The HyperCOD dataset and our HSC-SAM baseline provide a robust foundation to foster future research in this emerging area.
Abstract:Salient Object Detection (SOD) is crucial in computer vision, yet RGB-based methods face limitations in challenging scenes, such as small objects and similar color features. Hyperspectral images provide a promising solution for more accurate Hyperspectral Salient Object Detection (HSOD) by abundant spectral information, while HSOD methods are hindered by the lack of extensive and available datasets. In this context, we introduce HSOD-BIT-V2, the largest and most challenging HSOD benchmark dataset to date. Five distinct challenges focusing on small objects and foreground-background similarity are designed to emphasize spectral advantages and real-world complexity. To tackle these challenges, we propose Hyper-HRNet, a high-resolution HSOD network. Hyper-HRNet effectively extracts, integrates, and preserves effective spectral information while reducing dimensionality by capturing the self-similar spectral features. Additionally, it conveys fine details and precisely locates object contours by incorporating comprehensive global information and detailed object saliency representations. Experimental analysis demonstrates that Hyper-HRNet outperforms existing models, especially in challenging scenarios.