Abstract:Extracting discriminative information from complex spectral details in hyperspectral image (HSI) for HSI classification is pivotal. While current prevailing methods rely on spectral magnitude features, they could cause confusion in certain classes, resulting in misclassification and decreased accuracy. We find that the derivative spectrum proves more adept at capturing concealed information, thereby offering a distinct advantage in separating these confusion classes. Leveraging the complementarity between spectral magnitude and derivative features, we propose a Content-driven Spectrum Complementary Network based on Magnitude-Derivative Dual Encoder, employing these two features as combined inputs. To fully utilize their complementary information, we raise a Content-adaptive Point-wise Fusion Module, enabling adaptive fusion of dual-encoder features in a point-wise selective manner, contingent upon feature representation. To preserve a rich source of complementary information while extracting more distinguishable features, we introduce a Hybrid Disparity-enhancing Loss that enhances the differential expression of the features from the two branches and increases the inter-class distance. As a result, our method achieves state-of-the-art results on the extensive WHU-OHS dataset and eight other benchmark datasets.
Abstract:Hyperspectral image classification, a task that assigns pre-defined classes to each pixel in a hyperspectral image of remote sensing scenes, often faces challenges due to the neglect of correlations between spectrally similar pixels. This oversight can lead to inaccurate edge definitions and difficulties in managing minor spectral variations in contiguous areas. To address these issues, we introduce the novel Dual-stage Spectral Supertoken Classifier (DSTC), inspired by superpixel concepts. DSTC employs spectrum-derivative-based pixel clustering to group pixels with similar spectral characteristics into spectral supertokens. By projecting the classification of these tokens onto the image space, we achieve pixel-level results that maintain regional classification consistency and precise boundary. Moreover, recognizing the diversity within tokens, we propose a class-proportion-based soft label. This label adaptively assigns weights to different categories based on their prevalence, effectively managing data distribution imbalances and enhancing classification performance. Comprehensive experiments on WHU-OHS, IP, KSC, and UP datasets corroborate the robust classification capabilities of DSTC and the effectiveness of its individual components. Code will be publicly available at https://github.com/laprf/DSTC.