Abstract:We will demonstrate a conversational products recommendation agent. This system shows how we combine research in personalized recommendation systems with research in dialogue systems to build a virtual sales agent. Based on new deep learning technologies we developed, the virtual agent is capable of learning how to interact with users, how to answer user questions, what is the next question to ask, and what to recommend when chatting with a human user. Normally a descent conversational agent for a particular domain requires tens of thousands of hand labeled conversational data or hand written rules. This is a major barrier when launching a conversation agent for a new domain. We will explore and demonstrate the effectiveness of the learning solution even when there is no hand written rules or hand labeled training data.
Abstract:[Background]: Systematic Literature Review (SLR) has become an important software engineering research method but costs tremendous efforts. [Aim]: This paper proposes an approach to leverage on empirically evolved ontology to support automating key SLR activities. [Method]: First, we propose an ontology, SLRONT, built on SLR experiences and best practices as a groundwork to capture common terminologies and their relationships during SLR processes; second, we present an extended version of SLRONT, the COSONT and instantiate it with the knowledge and concepts extracted from structured abstracts. Case studies illustrate the details of applying it for supporting SLR steps. [Results]: Results show that through using COSONT, we acquire the same conclusion compared with sheer manual works, but the efforts involved is significantly reduced. [Conclusions]: The approach of using ontology could effectively and efficiently support the conducting of systematic literature review.