Abstract:Recently, compression and acceleration of deep neural networks are in critic need. Bayesian generalization of structured pruning represents an important research direction to solve the above problem. However, the existing Bayesian methods ignore the dependency among neurons and filters for computational simplicity. In this study, we explore, under Bayesian framework, a structured pruning method with layer-wise sequential dependency assumed, a more general learning setting. Based on the property of Dirac distribution, we further derive a new dropout noise, which makes it possible to approximate the posterior of dropout noise knowing that of the previous layer. With the Dirac-like dropout noise, we further propose a recursive strategy, named \emph{Recursive Bayesian Pruning} (RBP), to train and prune networks in a layer-by-layer fashion. The unimportant neurons and filters are directly targeted and removed, taking the influence from the previous layer. Experiments on typical neural networks LeNet-300-100, LeNet-5 and VGG-16 have demonstrated the proposed method are competitive with or even outperform the state-of-the-art methods in several compression and acceleration metrics.
Abstract:With the explosive growth of image databases, deep hashing, which learns compact binary descriptors for images, has become critical for fast image retrieval. Many existing deep hashing methods leverage quantization loss, defined as distance between the features before and after quantization, to reduce the error from binarizing features. While minimizing the quantization loss guarantees that quantization has minimal effect on retrieval accuracy, it unfortunately significantly reduces the expressiveness of features even before the quantization. In this paper, we show that the above definition of quantization loss is too restricted and in fact not necessary for maintaining high retrieval accuracy. We therefore propose a new form of quantization loss measured in triplets. The core idea of the triplet quantization loss is to learn discriminative real-valued descriptors which lead to minimal loss on retrieval accuracy after quantization. Extensive experiments on two widely used benchmark data sets of different scales, CIFAR-10 and In-shop, demonstrate that the proposed method outperforms the state-of-the-art deep hashing methods. Moreover, we show that the compact binary descriptors obtained with triplet quantization loss lead to very small performance drop after quantization.