Abstract:The utilization of artificial intelligence (AI) in card games has been a well-explored subject within AI research for an extensive period. Recent advancements have propelled AI programs to showcase expertise in intricate card games such as Mahjong, DouDizhu, and Texas Hold'em. In this work, we aim to develop an AI program for an exceptionally complex and popular card game called GuanDan. This game involves four players engaging in both competitive and cooperative play throughout a long process to upgrade their level, posing great challenges for AI due to its expansive state and action space, long episode length, and complex rules. Employing reinforcement learning techniques, specifically Deep Monte Carlo (DMC), and a distributed training framework, we first put forward an AI program named DanZero for this game. Evaluation against baseline AI programs based on heuristic rules highlights the outstanding performance of our bot. Besides, in order to further enhance the AI's capabilities, we apply policy-based reinforcement learning algorithm to GuanDan. To address the challenges arising from the huge action space, which will significantly impact the performance of policy-based algorithms, we adopt the pre-trained model to facilitate the training process and the achieved AI program manages to achieve a superior performance.
Abstract:Card game AI has always been a hot topic in the research of artificial intelligence. In recent years, complex card games such as Mahjong, DouDizhu and Texas Hold'em have been solved and the corresponding AI programs have reached the level of human experts. In this paper, we are devoted to developing an AI program for a more complex card game, GuanDan, whose rules are similar to DouDizhu but much more complicated. To be specific, the characteristics of large state and action space, long length of one episode and the unsure number of players in the GuanDan pose great challenges for the development of the AI program. To address these issues, we propose the first AI program DanZero for GuanDan using reinforcement learning technique. Specifically, we utilize a distributed framework to train our AI system. In the actor processes, we carefully design the state features and agents generate samples by self-play. In the learner process, the model is updated by Deep Monte-Carlo Method. After training for 30 days using 160 CPUs and 1 GPU, we get our DanZero bot. We compare it with 8 baseline AI programs which are based on heuristic rules and the results reveal the outstanding performance of DanZero. We also test DanZero with human players and demonstrate its human-level performance.