Abstract:Generating samples given a specific label requires estimating conditional distributions. We derive a tractable upper bound of the Wasserstein distance between conditional distributions to lay the theoretical groundwork to learn conditional distributions. Based on this result, we propose a novel conditional generation algorithm where conditional distributions are fully characterized by a metric space defined by a statistical distance. We employ optimal transport theory to propose the Wasserstein geodesic generator, a new conditional generator that learns the Wasserstein geodesic. The proposed method learns both conditional distributions for observed domains and optimal transport maps between them. The conditional distributions given unobserved intermediate domains are on the Wasserstein geodesic between conditional distributions given two observed domain labels. Experiments on face images with light conditions as domain labels demonstrate the efficacy of the proposed method.
Abstract:Deep neural networks (DNNs) detect patterns in data and have shown versatility and strong performance in many computer vision applications. However, DNNs alone are susceptible to obvious mistakes that violate simple, common sense concepts and are limited in their ability to use explicit knowledge to guide their search and decision making. While overall DNN performance metrics may be good, these obvious errors, coupled with a lack of explainability, have prevented widespread adoption for crucial tasks such as medical image analysis. The purpose of this paper is to introduce SimpleMind, an open-source software framework for Cognitive AI focused on medical image understanding. It allows creation of a knowledge base that describes expected characteristics and relationships between image objects in an intuitive human-readable form. The SimpleMind framework brings thinking to DNNs by: (1) providing methods for reasoning with the knowledge base about image content, such as spatial inferencing and conditional reasoning to check DNN outputs; (2) applying process knowledge, in the form of general-purpose software agents, that are chained together to accomplish image preprocessing, DNN prediction, and result post-processing, and (3) performing automatic co-optimization of all knowledge base parameters to adapt agents to specific problems. SimpleMind enables reasoning on multiple detected objects to ensure consistency, providing cross checking between DNN outputs. This machine reasoning improves the reliability and trustworthiness of DNNs through an interpretable model and explainable decisions. Example applications are provided that demonstrate how SimpleMind supports and improves deep neural networks by embedding them within a Cognitive AI framework.