Abstract:Federated learning (FL) is a promising framework for learning from distributed data while maintaining privacy. The development of efficient FL algorithms encounters various challenges, including heterogeneous data and systems, limited communication capacities, and constrained local computational resources. Recently developed FedADMM methods show great resilience to both data and system heterogeneity. However, they still suffer from performance deterioration if the hyperparameters are not carefully tuned. To address this issue, we propose an inexact and self-adaptive FedADMM algorithm, termed FedADMM-InSa. First, we design an inexactness criterion for the clients' local updates to eliminate the need for empirically setting the local training accuracy. This inexactness criterion can be assessed by each client independently based on its unique condition, thereby reducing the local computational cost and mitigating the undesirable straggle effect. The convergence of the resulting inexact ADMM is proved under the assumption of strongly convex loss functions. Additionally, we present a self-adaptive scheme that dynamically adjusts each client's penalty parameter, enhancing algorithm robustness by mitigating the need for empirical penalty parameter choices for each client. Extensive numerical experiments on both synthetic and real-world datasets are conducted. As validated by some numerical tests, our proposed algorithm can reduce the clients' local computational load significantly and also accelerate the learning process compared to the vanilla FedADMM.
Abstract:Federated Learning (FL) is a distributed learning paradigm that enables multiple clients to collaborate on building a machine learning model without sharing their private data. Although FL is considered privacy-preserved by design, recent data reconstruction attacks demonstrate that an attacker can recover clients' training data based on the parameters shared in FL. However, most existing methods fail to attack the most widely used horizontal Federated Averaging (FedAvg) scenario, where clients share model parameters after multiple local training steps. To tackle this issue, we propose an interpolation-based approximation method, which makes attacking FedAvg scenarios feasible by generating the intermediate model updates of the clients' local training processes. Then, we design a layer-wise weighted loss function to improve the data quality of reconstruction. We assign different weights to model updates in different layers concerning the neural network structure, with the weights tuned by Bayesian optimization. Finally, experimental results validate the superiority of our proposed approximate and weighted attack (AWA) method over the other state-of-the-art methods, as demonstrated by the substantial improvement in different evaluation metrics for image data reconstructions.
Abstract:We show that the physics-informed neural networks (PINNs), in combination with some recently developed discontinuity capturing neural networks, can be applied to solve optimal control problems subject to partial differential equations (PDEs) with interfaces and some control constraints. The resulting algorithm is mesh-free and scalable to different PDEs, and it ensures the control constraints rigorously. Since the boundary and interface conditions, as well as the PDEs, are all treated as soft constraints by lumping them into a weighted loss function, it is necessary to learn them simultaneously and there is no guarantee that the boundary and interface conditions can be satisfied exactly. This immediately causes difficulties in tuning the weights in the corresponding loss function and training the neural networks. To tackle these difficulties and guarantee the numerical accuracy, we propose to impose the boundary and interface conditions as hard constraints in PINNs by developing a novel neural network architecture. The resulting hard-constraint PINNs approach guarantees that both the boundary and interface conditions can be satisfied exactly and they are decoupled from the learning of the PDEs. Its efficiency is promisingly validated by some elliptic and parabolic interface optimal control problems.
Abstract:We consider a general class of nonsmooth optimal control problems with partial differential equation (PDE) constraints, which are very challenging due to its nonsmooth objective functionals and the resulting high-dimensional and ill-conditioned systems after discretization. We focus on the application of a primal-dual method, with which different types of variables can be treated individually and thus its main computation at each iteration only requires solving two PDEs. Our target is to accelerate the primal-dual method with either larger step sizes or operator learning techniques. For the accelerated primal-dual method with larger step sizes, its convergence can be still proved rigorously while it numerically accelerates the original primal-dual method in a simple and universal way. For the operator learning acceleration, we construct deep neural network surrogate models for the involved PDEs. Once a neural operator is learned, solving a PDE requires only a forward pass of the neural network, and the computational cost is thus substantially reduced. The accelerated primal-dual method with operator learning is mesh-free, numerically efficient, and scalable to different types of PDEs. The acceleration effectiveness of these two techniques is promisingly validated by some preliminary numerical results.