Abstract:We show that the physics-informed neural networks (PINNs), in combination with some recently developed discontinuity capturing neural networks, can be applied to solve optimal control problems subject to partial differential equations (PDEs) with interfaces and some control constraints. The resulting algorithm is mesh-free and scalable to different PDEs, and it ensures the control constraints rigorously. Since the boundary and interface conditions, as well as the PDEs, are all treated as soft constraints by lumping them into a weighted loss function, it is necessary to learn them simultaneously and there is no guarantee that the boundary and interface conditions can be satisfied exactly. This immediately causes difficulties in tuning the weights in the corresponding loss function and training the neural networks. To tackle these difficulties and guarantee the numerical accuracy, we propose to impose the boundary and interface conditions as hard constraints in PINNs by developing a novel neural network architecture. The resulting hard-constraint PINNs approach guarantees that both the boundary and interface conditions can be satisfied exactly and they are decoupled from the learning of the PDEs. Its efficiency is promisingly validated by some elliptic and parabolic interface optimal control problems.
Abstract:We consider a general class of nonsmooth optimal control problems with partial differential equation (PDE) constraints, which are very challenging due to its nonsmooth objective functionals and the resulting high-dimensional and ill-conditioned systems after discretization. We focus on the application of a primal-dual method, with which different types of variables can be treated individually and thus its main computation at each iteration only requires solving two PDEs. Our target is to accelerate the primal-dual method with either larger step sizes or operator learning techniques. For the accelerated primal-dual method with larger step sizes, its convergence can be still proved rigorously while it numerically accelerates the original primal-dual method in a simple and universal way. For the operator learning acceleration, we construct deep neural network surrogate models for the involved PDEs. Once a neural operator is learned, solving a PDE requires only a forward pass of the neural network, and the computational cost is thus substantially reduced. The accelerated primal-dual method with operator learning is mesh-free, numerically efficient, and scalable to different types of PDEs. The acceleration effectiveness of these two techniques is promisingly validated by some preliminary numerical results.