Abstract:Infrared and visible image fusion aims to generate synthetic images simultaneously containing salient features and rich texture details, which can be used to boost downstream tasks. However, existing fusion methods are suffering from the issues of texture loss and edge information deficiency, which result in suboptimal fusion results. Meanwhile, the straight-forward up-sampling operator can not well preserve the source information from multi-scale features. To address these issues, a novel fusion network based on the wavelet-guided pooling (wave-pooling) manner is proposed, termed as WavePF. Specifically, a wave-pooling based encoder is designed to extract multi-scale image and detail features of source images at the same time. In addition, the spatial attention model is used to aggregate these salient features. After that, the fused features will be reconstructed by the decoder, in which the up-sampling operator is replaced by the wave-pooling reversed operation. Different from the common max-pooling technique, image features after the wave-pooling layer can retain abundant details information, which can benefit the fusion process. In this case, rich texture details and multi-scale information can be maintained during the reconstruction phase. The experimental results demonstrate that our method exhibits superior fusion performance over the state-of-the-arts on multiple image fusion benchmarks
Abstract:Infrared and visible image fusion task aims to generate a fused image which contains salient features and rich texture details from multi-source images. However, under complex illumination conditions, few algorithms pay attention to the edge information of local regions which is crucial for downstream tasks. To this end, we propose a fusion network based on the local edge enhancement, named LE2Fusion. Specifically, a local edge enhancement (LE2) module is proposed to improve the edge information under complex illumination conditions and preserve the essential features of image. For feature extraction, a multi-scale residual attention (MRA) module is applied to extract rich features. Then, with LE2, a set of enhancement weights are generated which are utilized in feature fusion strategy and used to guide the image reconstruction. To better preserve the local detail information and structure information, the pixel intensity loss function based on the local region is also presented. The experiments demonstrate that the proposed method exhibits better fusion performance than the state-of-the-art fusion methods on public datasets.