Abstract:Bearing is a key component in industrial machinery and its failure may lead to unwanted downtime and economic loss. Hence, it is necessary to predict the remaining useful life (RUL) of bearings. Conventional data-driven approaches of RUL prediction require expert domain knowledge for manual feature extraction and may suffer from data distribution discrepancy between training and test data. In this study, we propose a novel generalized multiscale feature extraction method with generative adversarial networks. The adversarial training learns the distribution of training data from different bearings and is introduced for health stage division and RUL prediction. To capture the sequence feature from a one-dimensional vibration signal, we adapt a U-Net architecture that reconstructs features to process them with multiscale layers in the generator of the adversarial network. To validate the proposed method, comprehensive experiments on two rotating machinery datasets have been conducted to predict the RUL. The experimental results show that the proposed feature extraction method can effectively predict the RUL and outperforms the conventional RUL prediction approaches based on deep neural networks. The implementation code is available at https://github.com/opensuh/GMFE.
Abstract:Deep neural networks (DNNs) have been widely used for medical image analysis. However, the lack of access a to large-scale annotated dataset poses a great challenge, especially in the case of rare diseases, or new domains for the research society. Transfer of pre-trained features, from the relatively large dataset is a considerable solution. In this paper, we have explored supervised segmentation using domain adaptation for optic nerve and orbital tumor, when only small sampled CT images are given. Even the lung image database consortium image collection (LIDC-IDRI) is a cross-domain to orbital CT, but the proposed domain adaptation method improved the performance of attention U-Net for the segmentation in public optic nerve dataset and our clinical orbital tumor dataset. The code and dataset are available at https://github.com/cmcbigdata.
Abstract:The data imbalance problem is a frequent bottleneck in the classification performance of neural networks. In this paper, we propose a novel supervised discriminative feature generation (DFG) method for a minority class dataset. DFG is based on the modified structure of a generative adversarial network consisting of four independent networks: generator, discriminator, feature extractor, and classifier. To augment the selected discriminative features of the minority class data by adopting an attention mechanism, the generator for the class-imbalanced target task is trained, and the feature extractor and classifier are regularized using the pre-trained features from a large source data. The experimental results show that the DFG generator enhances the augmentation of the label-preserved and diverse features, and the classification results are significantly improved on the target task. The feature generation model can contribute greatly to the development of data augmentation methods through discriminative feature generation and supervised attention methods.
Abstract:Document image enhancement and binarization methods are often used to improve the accuracy and efficiency of document image analysis tasks such as text recognition. Traditional non-machine-learning methods are constructed on low-level features in an unsupervised manner but have difficulty with binarization on documents with severely degraded backgrounds. Convolutional neural network-based methods focus only on grayscale images and on local textual features. In this paper, we propose a two-stage color document image enhancement and binarization method using generative adversarial neural networks. In the first stage, four color-independent adversarial networks are trained to extract color foreground information from an input image for document image enhancement. In the second stage, two independent adversarial networks with global and local features are trained for image binarization of documents of variable size. For the adversarial neural networks, we formulate loss functions between a discriminator and generators having an encoder-decoder structure. Experimental results show that the proposed method achieves better performance than many classical and state-of-the-art algorithms over the Document Image Binarization Contest (DIBCO) datasets, the LRDE Document Binarization Dataset (LRDE DBD), and our shipping label image dataset.
Abstract:In the computational prediction of chemical compound properties, molecular descriptors and fingerprints encoded to low dimensional vectors are used. The selection of proper molecular descriptors and fingerprints is both important and challenging as the performance of such models is highly dependent on descriptors. To overcome this challenge, natural language processing models that utilize simplified molecular input line-entry system as input were studied, and several transformer-variant models achieved superior results when compared with conventional methods. In this study, we explored the structural differences of the transformer-variant model and proposed a new self-attention based model. The representation learning performance of the self-attention module was evaluated in a multi-task learning environment using imbalanced chemical datasets. The experiment results showed that our model achieved competitive outcomes on several benchmark datasets. The source code of our experiment is available at https://github.com/arwhirang/sa-mtl and the dataset is available from the same URL.
Abstract:The demands of automated shipping address recognition and verification have increased to handle a large number of packages and to save costs associated with misdelivery. A previous study proposed a deep learning system where the shipping address is recognized and verified based on a camera image capturing the shipping address and barcode area. Because the system performance depends on the input image quality, inspection of input image quality is necessary for image preprocessing. In this paper, we propose an input image quality verification method combining global and local features. Object detection and scale-invariant feature transform in different feature spaces are developed to extract global and local features from several independent convolutional neural networks. The conditions of shipping label images are classified by fully connected fusion layers with concatenated global and local features. The experimental results regarding real captured and generated images show that the proposed method achieves better performance than other methods. These results are expected to improve the shipping address recognition and verification system by applying different image preprocessing steps based on the classified conditions.