Abstract:Estimating the 3D pose of hand and potential hand-held object from monocular images is a longstanding challenge. Yet, existing methods are specialized, focusing on either bare-hand or hand interacting with object. No method can flexibly handle both scenarios and their performance degrades when applied to the other scenario. In this paper, we propose UniHOPE, a unified approach for general 3D hand-object pose estimation, flexibly adapting both scenarios. Technically, we design a grasp-aware feature fusion module to integrate hand-object features with an object switcher to dynamically control the hand-object pose estimation according to grasping status. Further, to uplift the robustness of hand pose estimation regardless of object presence, we generate realistic de-occluded image pairs to train the model to learn object-induced hand occlusions, and formulate multi-level feature enhancement techniques for learning occlusion-invariant features. Extensive experiments on three commonly-used benchmarks demonstrate UniHOPE's SOTA performance in addressing hand-only and hand-object scenarios. Code will be released on https://github.com/JoyboyWang/UniHOPE_Pytorch.
Abstract:Reconstructing 3D hand mesh robustly from a single image is very challenging, due to the lack of diversity in existing real-world datasets. While data synthesis helps relieve the issue, the syn-to-real gap still hinders its usage. In this work, we present HandBooster, a new approach to uplift the data diversity and boost the 3D hand-mesh reconstruction performance by training a conditional generative space on hand-object interactions and purposely sampling the space to synthesize effective data samples. First, we construct versatile content-aware conditions to guide a diffusion model to produce realistic images with diverse hand appearances, poses, views, and backgrounds; favorably, accurate 3D annotations are obtained for free. Then, we design a novel condition creator based on our similarity-aware distribution sampling strategies to deliberately find novel and realistic interaction poses that are distinctive from the training set. Equipped with our method, several baselines can be significantly improved beyond the SOTA on the HO3D and DexYCB benchmarks. Our code will be released on https://github.com/hxwork/HandBooster_Pytorch.
Abstract:Estimating 3D hand mesh from RGB images is a longstanding track, in which occlusion is one of the most challenging problems. Existing attempts towards this task often fail when the occlusion dominates the image space. In this paper, we propose SiMA-Hand, aiming to boost the mesh reconstruction performance by Single-to-Multi-view Adaptation. First, we design a multi-view hand reconstructor to fuse information across multiple views by holistically adopting feature fusion at image, joint, and vertex levels. Then, we introduce a single-view hand reconstructor equipped with SiMA. Though taking only one view as input at inference, the shape and orientation features in the single-view reconstructor can be enriched by learning non-occluded knowledge from the extra views at training, enhancing the reconstruction precision on the occluded regions. We conduct experiments on the Dex-YCB and HanCo benchmarks with challenging object- and self-caused occlusion cases, manifesting that SiMA-Hand consistently achieves superior performance over the state of the arts. Code will be released on https://github.com/JoyboyWang/SiMA-Hand Pytorch.