Abstract:The credit spread is a key indicator in bond investments, offering valuable insights for fixed-income investors to devise effective trading strategies. This study proposes a novel credit spread forecasting model leveraging ensemble learning techniques. To enhance predictive accuracy, a feature selection method based on mutual information is incorporated. Empirical results demonstrate that the proposed methodology delivers superior accuracy in credit spread predictions. Additionally, we present a forecast of future credit spread trends using current data, providing actionable insights for investment decision-making.
Abstract:Optimal algorithms are developed for robust detection of changes in non-stationary processes. These are processes in which the distribution of the data after change varies with time. The decision-maker does not have access to precise information on the post-change distribution. It is shown that if the post-change non-stationary family has a distribution that is least favorable in a well-defined sense, then the algorithms designed using the least favorable distributions are robust and optimal. Non-stationary processes are encountered in public health monitoring and space and military applications. The robust algorithms are applied to real and simulated data to show their effectiveness.