Abstract:Large language models (LLMs) hold great promise for assisting clinical interviews due to their fluent interactive capabilities and extensive medical knowledge. However, the lack of high-quality interview dialogue data and widely accepted evaluation methods has significantly impeded this process. So we propose CliniChat, a framework that integrates multi-source knowledge to enable LLMs to simulate real-world clinical interviews. It consists of two modules: Clini-Recon and Clini-Eval, each responsible for reconstructing and evaluating interview dialogues, respectively. By incorporating three sources of knowledge, Clini-Recon transforms clinical notes into systematic, professional, and empathetic interview dialogues. Clini-Eval combines a comprehensive evaluation metric system with a two-phase automatic evaluation approach, enabling LLMs to assess interview performance like experts. We contribute MedQA-Dialog, a high-quality synthetic interview dialogue dataset, and CliniChatGLM, a model specialized for clinical interviews. Experimental results demonstrate that CliniChatGLM's interview capabilities undergo a comprehensive upgrade, particularly in history-taking, achieving state-of-the-art performance.
Abstract:Physical layer key generation technology which leverages channel randomness to generate secret keys has attracted extensive attentions in long range (LoRa)-based networks recently. We in this paper develop a software-defined radio (SDR) based LoRa communications platform using GNU Radio on universal software radio peripheral (USRP) to implement and evaluate typical physical layer key generation schemes. Thanks to the flexibility and configurability of GNU Radio to extract LoRa packets, we are able to obtain the fine-grained channel frequency response (CFR) through LoRa preamble based channel estimation for key generation. Besides, we propose a lowcomplexity preprocessing method to enhance the randomness of quantization while reducing the secret key disagreement ratio. The results indicate that we can achieve 367 key bits with a high level of randomness through just a single effective channel probing in an indoor environment at a distance of 2 meters under the circumstance of a spreading factor (SF) of 7, a preamble length of 8, a signal bandwidth of 250 kHz, and a sampling rate of 1 MHz.